Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Discovering Universal Geometry in Embeddings wi...
Search
Momose Oyama
December 21, 2023
Research
2
1.1k
Discovering Universal Geometry in Embeddings with ICA
2023年12月20日 NLPコロキウム
Momose Oyama
December 21, 2023
Tweet
Share
More Decks by Momose Oyama
See All by Momose Oyama
独立成分分析を用いた埋め込み表現の視覚的な理解
momoseoyama
6
2.1k
Other Decks in Research
See All in Research
VectorLLM: Human-like Extraction of Structured Building Contours via Multimodal LLMs
satai
4
320
不確実性下における目的と手段の統合的探索に向けた連続腕バンディットの応用 / iot70_gp_rff_mab
monochromegane
2
190
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
200
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
120
PhD Defense 2025: Visual Understanding of Human Hands in Interactions
tkhkaeio
1
250
Panopticon: Advancing Any-Sensor Foundation Models for Earth Observation
satai
3
220
GPUを利用したStein Particle Filterによる点群6自由度モンテカルロSLAM
takuminakao
0
360
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
610
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
260
投資戦略202508
pw
0
570
Minimax and Bayes Optimal Best-arm Identification: Adaptive Experimental Design for Treatment Choice
masakat0
0
180
SegEarth-OV: Towards Training-Free Open-Vocabulary Segmentation for Remote Sensing Images
satai
3
310
Featured
See All Featured
Rails Girls Zürich Keynote
gr2m
95
14k
Building Better People: How to give real-time feedback that sticks.
wjessup
369
20k
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
Keith and Marios Guide to Fast Websites
keithpitt
411
23k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
45
2.5k
Scaling GitHub
holman
463
140k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Speed Design
sergeychernyshev
32
1.2k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
Building a Scalable Design System with Sketch
lauravandoore
463
33k
How STYLIGHT went responsive
nonsquared
100
5.8k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
32
2.3k
Transcript
Discovering Universal Geometry in Embeddings with ICA 2023.12.20 NLPコロキウム Hiroaki
Yamagiwa*, Momose Oyama*, Hidetoshi Shimodaira EMNLP2023
⼤⼭百々勢 (Oyama Momose) l 京都⼤学 下平研究室 修⼠2年 (D進の予定) l 埋め込み表現の研究
◦ Norm of Word Embedding Encodes Information Gain [Oyama, Yokoi, Shimodaira, EMNLP 2023] [Paper] ◦ Discovering Universal Geometry in Embeddings with ICA [Yamagiwa*, Oyama*, Shimodaira, EMNLP 2023] [Paper] l 国内のコミュニティ ◦ NLP, YANS ◦ IBIS, 統計連合⼤会 2
道具の紹介︓ Independent Component Analysis (ICA)
ICAは独⽴な軸を⾒つける変換 𝐗𝐁 = 𝐒 ⼊⼒の⾏列: (𝑛, 𝑑) 変換後の⾏列: (𝑛, 𝑑)
𝑑個の列が互いに独⽴ 変換⾏列: (𝑑, 𝑑) 4
ICAは独⽴な軸を⾒つける変換 𝐗𝐁 = 𝐒 ⼊⼒の⾏列: (𝑛, 𝑑) 変換⾏列: (𝑑, 𝑑)
𝐗 (⼊⼒) 𝐒 (出⼒) ⾳声 𝑑箇所のマイクが拾った⼈々の話し声 𝑛秒分 𝑑個に分離した話し声のデータ 𝑛秒分 5 変換後の⾏列: (𝑛, 𝑑) 𝑑個の列が互いに独⽴
ICAは独⽴な軸を⾒つける変換 𝐗 (⼊⼒) 𝐒 (出⼒) ⾳声 𝑑箇所のマイクが拾った⼈々の話し声 𝑛秒分 𝑑個に分離した話し声のデータ 𝑛秒分
単語埋め込み 𝑑個の次元に分散して表現された 𝑛単語分の意味情報 𝑑個の独⽴な意味情報に分離された 𝑛単語の表現 (これから⾒ていきます) 𝐗𝐁 = 𝐒 ⼊⼒の⾏列: (𝑛, 𝑑) 変換⾏列: (𝑑, 𝑑) 6 変換後の⾏列: (𝑛, 𝑑) 𝑑個の列が互いに独⽴
単語埋め込みをICAで分析
単語ベクトルをヒートマップで可視化 l Skip-gram with Negative Samplingで学習した 単語ベクトル l ヒートマップ ◦
⾏: 単語ベクトル ◦ 列: 次元 (5/300) l 各要素の⼤⼩は解釈できない ◦ 「分散」表現なので ⾃然なこと 8
PCAをしても解釈性に変化なし 9
ICA後は各次元が持つ意味を解釈できる l 16軸: ⾷べ物 (dishes, …) l 26軸: ⾞ (cars,
…) l 35軸: 映画 (film, …) l 34軸: イタリア (italian, …) l 56軸: ⽇本 (japanese, …) 10
独⽴成分は「尖って」いて解釈可能 l 2軸に沿った散布図 ◦ イタリア軸と⾞軸 ◦ ⽇本軸と映画軸 l 加法構成性 ◦
Ferrari ≈ italian + cars ◦ kurosawa ≈ japanese + film l 300次元よりも⼩さな部分 空間で単語の意味を表現 11
ICAの結果の普遍性
まず、英語の埋め込みを可視化 英語 13
ICA: 異なる⾔語の埋め込みで形と意味が共通 14
PCA: 共通の性質を⾒つけられない 15
ICA: モデルやドメインの違いを超えた普遍性 16
PCA: やはりうまくいかない 17
なぜPCAではなくICAが うまくいくのか
PCAが捉えきれない⾼次情報をICAは捉える 𝐒 = 𝐗𝐀𝐑 ICA が独⽴な軸を⾒つける⼿順 1. ⽩⾊化 (PCA): 各軸を無相関にする
2. 直交変換: 各軸の⾮ガウス性を最⼤化する 19
PCAが捉えきれない⾮ガウス性をICAは捉える ICA が独⽴な軸を⾒つける⼿順 1. ⽩⾊化 (PCA): 各軸を無相関にする 2. 直交変換: 各軸の⾮ガウス性を最⼤化する
lどれだけガウス分布 から逸脱しているか l例えば歪度や尖度 で測定できる 𝐒 = 𝐗𝐀𝐑 20
PCAが捉えきれない⾮ガウス性をICAは捉える ICA = PCA + 直交変換 l PCA: 「尖った形状」を⾒つけられない l
ICA: 「尖った形状」を⾒つけられる 𝐒 = 𝐗𝐀𝐑 21
まとめ
まとめ l ICAを使って 埋め込みを分析した l わかったこと 1. 埋め込みの独⽴成分は 「尖って」いて解釈可能 2.
⾔語・モデル・ドメインの 違いを超えて普遍的 l PCAだと上⼿くいかない 23