Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Discovering Universal Geometry in Embeddings wi...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Momose Oyama
December 21, 2023
Research
2
1.1k
Discovering Universal Geometry in Embeddings with ICA
2023年12月20日 NLPコロキウム
Momose Oyama
December 21, 2023
Tweet
Share
More Decks by Momose Oyama
See All by Momose Oyama
独立成分分析を用いた埋め込み表現の視覚的な理解
momoseoyama
6
2.5k
Other Decks in Research
See All in Research
2025-11-21-DA-10th-satellite
yegusa
0
110
Open Gateway 5GC利用への期待と不安
stellarcraft
2
170
AI Agentの精度改善に見るML開発との共通点 / commonalities in accuracy improvements in agentic era
shimacos
2
260
「リアル×スキマ時間」を活用したUXリサーチ 〜新規事業を前に進めるためのUXリサーチプロセスの設計〜
techtekt
PRO
0
260
ローテーション別のサイドアウト戦略 ~なぜあのローテは回らないのか?~
vball_panda
0
280
ペットのかわいい瞬間を撮影する オートシャッターAIアプリへの スマートラベリングの適用
mssmkmr
0
180
生成AI による論文執筆サポート・ワークショップ 論文執筆・推敲編 / Generative AI-Assisted Paper Writing Support Workshop: Drafting and Revision Edition
ks91
PRO
0
110
それ、チームの改善になってますか?ー「チームとは?」から始めた組織の実験ー
hirakawa51
0
490
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
500
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
400
GPUを利用したStein Particle Filterによる点群6自由度モンテカルロSLAM
takuminakao
0
880
スキマバイトサービスにおける現場起点でのデザインアプローチ
yoshioshingyouji
0
280
Featured
See All Featured
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Everyday Curiosity
cassininazir
0
120
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
72
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
100
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
61
49k
Ethics towards AI in product and experience design
skipperchong
2
180
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
150
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
1k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
It's Worth the Effort
3n
188
29k
Code Reviewing Like a Champion
maltzj
527
40k
Transcript
Discovering Universal Geometry in Embeddings with ICA 2023.12.20 NLPコロキウム Hiroaki
Yamagiwa*, Momose Oyama*, Hidetoshi Shimodaira EMNLP2023
⼤⼭百々勢 (Oyama Momose) l 京都⼤学 下平研究室 修⼠2年 (D進の予定) l 埋め込み表現の研究
◦ Norm of Word Embedding Encodes Information Gain [Oyama, Yokoi, Shimodaira, EMNLP 2023] [Paper] ◦ Discovering Universal Geometry in Embeddings with ICA [Yamagiwa*, Oyama*, Shimodaira, EMNLP 2023] [Paper] l 国内のコミュニティ ◦ NLP, YANS ◦ IBIS, 統計連合⼤会 2
道具の紹介︓ Independent Component Analysis (ICA)
ICAは独⽴な軸を⾒つける変換 𝐗𝐁 = 𝐒 ⼊⼒の⾏列: (𝑛, 𝑑) 変換後の⾏列: (𝑛, 𝑑)
𝑑個の列が互いに独⽴ 変換⾏列: (𝑑, 𝑑) 4
ICAは独⽴な軸を⾒つける変換 𝐗𝐁 = 𝐒 ⼊⼒の⾏列: (𝑛, 𝑑) 変換⾏列: (𝑑, 𝑑)
𝐗 (⼊⼒) 𝐒 (出⼒) ⾳声 𝑑箇所のマイクが拾った⼈々の話し声 𝑛秒分 𝑑個に分離した話し声のデータ 𝑛秒分 5 変換後の⾏列: (𝑛, 𝑑) 𝑑個の列が互いに独⽴
ICAは独⽴な軸を⾒つける変換 𝐗 (⼊⼒) 𝐒 (出⼒) ⾳声 𝑑箇所のマイクが拾った⼈々の話し声 𝑛秒分 𝑑個に分離した話し声のデータ 𝑛秒分
単語埋め込み 𝑑個の次元に分散して表現された 𝑛単語分の意味情報 𝑑個の独⽴な意味情報に分離された 𝑛単語の表現 (これから⾒ていきます) 𝐗𝐁 = 𝐒 ⼊⼒の⾏列: (𝑛, 𝑑) 変換⾏列: (𝑑, 𝑑) 6 変換後の⾏列: (𝑛, 𝑑) 𝑑個の列が互いに独⽴
単語埋め込みをICAで分析
単語ベクトルをヒートマップで可視化 l Skip-gram with Negative Samplingで学習した 単語ベクトル l ヒートマップ ◦
⾏: 単語ベクトル ◦ 列: 次元 (5/300) l 各要素の⼤⼩は解釈できない ◦ 「分散」表現なので ⾃然なこと 8
PCAをしても解釈性に変化なし 9
ICA後は各次元が持つ意味を解釈できる l 16軸: ⾷べ物 (dishes, …) l 26軸: ⾞ (cars,
…) l 35軸: 映画 (film, …) l 34軸: イタリア (italian, …) l 56軸: ⽇本 (japanese, …) 10
独⽴成分は「尖って」いて解釈可能 l 2軸に沿った散布図 ◦ イタリア軸と⾞軸 ◦ ⽇本軸と映画軸 l 加法構成性 ◦
Ferrari ≈ italian + cars ◦ kurosawa ≈ japanese + film l 300次元よりも⼩さな部分 空間で単語の意味を表現 11
ICAの結果の普遍性
まず、英語の埋め込みを可視化 英語 13
ICA: 異なる⾔語の埋め込みで形と意味が共通 14
PCA: 共通の性質を⾒つけられない 15
ICA: モデルやドメインの違いを超えた普遍性 16
PCA: やはりうまくいかない 17
なぜPCAではなくICAが うまくいくのか
PCAが捉えきれない⾼次情報をICAは捉える 𝐒 = 𝐗𝐀𝐑 ICA が独⽴な軸を⾒つける⼿順 1. ⽩⾊化 (PCA): 各軸を無相関にする
2. 直交変換: 各軸の⾮ガウス性を最⼤化する 19
PCAが捉えきれない⾮ガウス性をICAは捉える ICA が独⽴な軸を⾒つける⼿順 1. ⽩⾊化 (PCA): 各軸を無相関にする 2. 直交変換: 各軸の⾮ガウス性を最⼤化する
lどれだけガウス分布 から逸脱しているか l例えば歪度や尖度 で測定できる 𝐒 = 𝐗𝐀𝐑 20
PCAが捉えきれない⾮ガウス性をICAは捉える ICA = PCA + 直交変換 l PCA: 「尖った形状」を⾒つけられない l
ICA: 「尖った形状」を⾒つけられる 𝐒 = 𝐗𝐀𝐑 21
まとめ
まとめ l ICAを使って 埋め込みを分析した l わかったこと 1. 埋め込みの独⽴成分は 「尖って」いて解釈可能 2.
⾔語・モデル・ドメインの 違いを超えて普遍的 l PCAだと上⼿くいかない 23