Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ざっと学んでみる確率過程 〜その1 : ブラウン運動〜
Search
NearMeの技術発表資料です
PRO
January 19, 2024
Science
0
280
ざっと学んでみる確率過程 〜その1 : ブラウン運動〜
確率過程のイントロダクションとして、ブラウン運動を用いて、解について色々と調べています。各粒子の存在分布がどのようになるのか、それについて概論的にまとめています。
NearMeの技術発表資料です
PRO
January 19, 2024
Tweet
Share
More Decks by NearMeの技術発表資料です
See All by NearMeの技術発表資料です
Architecture Decision Record (ADR)
nearme_tech
PRO
1
200
遺伝的アルゴリズムを実装する
nearme_tech
PRO
1
16
Fractional Derivative!
nearme_tech
PRO
1
14
GitHub Projectsにおける チケットの ステータス更新自動化について
nearme_tech
PRO
1
25
2つの曲線を比較する方法ってあるの? 〜フレシェ距離を試してみた〜 with Python
nearme_tech
PRO
1
100
Constrained K-means Clustering (クラスタサイズの制限をしたK-means法) を調べてみた
nearme_tech
PRO
1
41
VRPの近傍操作SWAP*について調べてみた
nearme_tech
PRO
1
77
新人エンジニアが読んでためになった本
nearme_tech
PRO
2
37
Object–relational mapping and query builder battle 1: Intro to Prisma
nearme_tech
PRO
1
44
Other Decks in Science
See All in Science
Improving Search @scale with efficient query experimentation @BerlinBuzzwords 2024
searchhub
0
230
対外衝撃波療法_井野辺病院リハビリ部
naoyukihiro1
0
130
ベイズのはなし
techmathproject
0
220
General Parasitology
uni_of_nomi
0
110
Machine Learning for Materials (Lecture 1)
aronwalsh
1
1.8k
Pokemon Roughs
shoryuuken
0
540
大規模画像テキストデータのフィルタリング手法の紹介
lyakaap
6
1.4k
Running llama.cpp on the CPU
ianozsvald
0
350
はじめての「相関と因果とエビデンス」入門:“動機づけられた推論” に抗うために
takehikoihayashi
16
6.6k
はじめてのバックドア基準:あるいは、重回帰分析の偏回帰係数を因果効果の推定値として解釈してよいのか問題
takehikoihayashi
2
390
Mastering Feature Engineering: Mining the Hidden Salary Formula with CakeResume
tlyu0419
0
230
A Theory of Scrum Team Effectiveness 〜『ゾンビスクラムサバイバルガイド』の裏側にある科学〜
bonotake
15
6.6k
Featured
See All Featured
The Pragmatic Product Professional
lauravandoore
30
6.2k
Building an army of robots
kneath
302
42k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
230
17k
Adopting Sorbet at Scale
ufuk
72
8.9k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
24
2k
What’s in a name? Adding method to the madness
productmarketing
PRO
21
3k
WebSockets: Embracing the real-time Web
robhawkes
59
7.3k
Build your cross-platform service in a week with App Engine
jlugia
228
18k
Bootstrapping a Software Product
garrettdimon
PRO
304
110k
Rebuilding a faster, lazier Slack
samanthasiow
78
8.5k
Gamification - CAS2011
davidbonilla
79
4.9k
The Illustrated Children's Guide to Kubernetes
chrisshort
46
48k
Transcript
0 ざっと学んでみる確率過程 〜その1 : ブラウン運動〜 2024-01-19 第75回NearMe技術勉強会 Kaito Asahi
1 確率過程とは?の前に... 確率ってなんですか?
2 確率過程とは?の前に... 確率ってなんですか? → なんかいろんなものがある程度でるな...(サイコロを振って、1の⽬が1, 2回出る) → どのくらいでこれは出るのかな?(サイコロ10回振ったら、1の⽬はどのくらい) → こんな傾向があるよな?ということを定量的に表せないか?(確率の必要性)
→ 確率を可視化したいね(確率分布の必要性)
3 確率過程とは? 確率過程の定義
4 確率過程とは? 確率過程の定義 → 下線部分を確認しておきましょう
5 確率過程とは? 確率空間について → 確率を定義するために必要な空間 Q : 確率を定義するために何が必要でしょうか? A :
• 標本全体の集合(標本空間) • 確率の⼤きさを測るために必要な指標(σ - 加法族) • 確率というものを定量的に計算するためのもの(確率測度) ◦ 標本空間から、実数(空間)への写像など( )
6 確率過程とは? 確率空間について → 確率を定義するために必要な空間 Q : 確率を定義するために何が必要でしょうか? A :
• 標本全体の集合(標本空間) • 確率の⼤きさを測るために必要な指標(σ - 加法族) • 確率というものを定量的に計算するためのもの(確率測度) ◦ 標本空間から、実数(空間)への写像など( ) コインを投げる時、{{}, {表}, {裏}, {表, 裏}, {裏, 表}}
7 具体的な確率過程〜ブラウン運動〜 1. ブラウン運動を理解するため(ランダム⼒を含む⼒学) • 必要なパラメータ(定数を含む) ◦ :質量(kg) ◦ :速度ベクトル(m/s)
◦ :外⼒(N) ◦ :時間(s) • 基本の運動⽅程式(質量の時間変化は無視:基本は、運動量の時間変化が⼒となる)
8 具体的な確率過程〜ブラウン運動〜 1. ブラウン運動を理解するため(ランダム⼒を含む⼒学) • ⼀般的なStokes抵抗を受ける運動(粘性⼒による影響) ( :減衰パラメータ)として、
9 具体的な確率過程〜ブラウン運動〜 1. ブラウン運動を理解するため(ランダム⼒を含む⼒学) • ⼀般的なStokes抵抗を受ける運動(粘性⼒による影響) ( :減衰パラメータ)として、 これでは、ランダムな運動は表せない
10 具体的な確率過程〜ブラウン運動〜 1. ブラウン運動を理解するため(ランダム⼒を含む⼒学) • ⼀般的なStokes抵抗を受ける運動(粘性⼒による影響) ( :減衰パラメータ)として、 これでは、ランダムな運動は表せない →
Aは定ベクトルで、1方向にのみ推進
11 具体的な確率過程〜ブラウン運動〜 1. ブラウン運動を理解するため(ランダム⼒を含む⼒学) • ランダム⼒を加える ( :単位質量当たりのランダム⼒)として、 ※具体的な解法はAppendixスライドにて
12 具体的な確率過程〜ブラウン運動〜 1. ブラウン運動を理解するため(ランダム⼒を含む⼒学) • ランダム⼒を加える ( :単位質量当たりのランダム⼒)として、 ここの積分値が分からない...
13 具体的な確率過程〜ブラウン運動〜 2. 伊藤積分(確率積分) ⼀般化しておく ※以下を仮定
14 具体的な確率過程〜ブラウン運動〜 2. 伊藤積分(確率積分)
15 具体的な確率過程〜ブラウン運動〜 2. 伊藤積分(確率積分) • となる※ を導⼊する ※形式的に、 これにより、⼀般的な関数
f(s) を W での積分の形で表すことができた!! ※過去の勉強会資料を参照:これはブラウン運動を仮定 https://speakerdeck.com/nearme_tech/kuo-san-moderunogai-yao-ss1-kuo-san-moderudeshi-wareruque-lu-wei-fen-ch eng-shi-nituite?slide=13
16 具体的な確率過程〜ブラウン運動〜 2. 伊藤積分(確率積分) • 伊藤積分で成り⽴つこと 1. (期待値) 2. (等張性)
17 具体的な確率過程〜ブラウン運動〜 2. 伊藤積分(確率積分) • 伊藤積分で成り⽴つこと 3. (マルチンゲール) 4.
(線形性)
18 具体的な確率過程〜ブラウン運動〜 2. 伊藤積分(確率積分) • を導⼊することで、 確率微分⽅程式!!!!
19 2. 伊藤積分(確率積分) • もう少しこの確率微分⽅程式を⾒てみよう 具体的な確率過程〜ブラウン運動〜 ドリフト項 拡散項
20 具体的な確率過程〜ブラウン運動〜 2. 伊藤積分(確率積分) • 確率微分⽅程式を⼀般化 ドリフト項 拡散項
21 具体的な確率過程〜ブラウン運動〜 3. 伊藤の公式(とても便利な変数変換) → 確率微分⽅程式にて、変数変換を⾏うもの :変数変換 ※3次以降の項は無視する
22 具体的な確率過程〜ブラウン運動〜 3. 伊藤の公式(とても便利な変数変換) → 確率微分⽅程式にて、変数変換を⾏うもの :変数変換 ※3次以降の項は無視する ここから
23 具体的な確率過程〜ブラウン運動〜 3. 伊藤の公式(とても便利な変数変換) ただし、 伊藤ルール
24 具体的な確率過程〜ブラウン運動〜 3. 伊藤の公式(とても便利な変数変換) ただし、 伊藤ルール ブラウン運動であるので、 は標準偏差 の 正規分布に従うことから導ける。
25 具体的な確率過程〜ブラウン運動〜 3. 伊藤の公式(とても便利な変数変換)
26 具体的な確率過程〜ブラウン運動〜 3. 伊藤の公式(とても便利な変数変換)
27 具体的な確率過程〜ブラウン運動〜 3. 伊藤の公式(とても便利な変数変換) • 具体例: ,
28 具体的な確率過程〜ブラウン運動〜 3. 伊藤の公式(とても便利な変数変換) • 具体例: ,
29 具体的な確率過程〜ブラウン運動〜 4. 伊藤の公式の良い部分!! • 具体例: 4-1. 期待値:
30 具体的な確率過程〜ブラウン運動〜 4. 伊藤の公式の良い部分!! • 具体例: 4-2. 分散:
31 具体的な確率過程〜ブラウン運動〜 4. 伊藤の公式の良い部分!! • 具体例: 4-3. 従う確率分布: 定常確率密度分布(正規分布に従う!!)
32 参考⽂献 1. 機械学習のための確率過程入門 確率微分方程式からベイズモデル,拡散モデル まで(https://www.ohmsha.co.jp/book/9784274231087/) 2. σ加法族と可測空間の定義・基本的な性質をわかりやすく (https://mathlandscape.com/sigma-field/) 3.
伊藤の公式を直感的に理解する(追記:ブラック・ショールズモデル (https://www.monte-carlo-note.com/2018/09/Ito-Formula.html)
33 Appendix
34 Appendix 〜⾮⻫次項を含む線形常微分⽅程式の解法〜 • 以下の線形常微分⽅程式を解く
35 Appendix 〜⾮⻫次項を含む線形常微分⽅程式の解法〜 • として導いた以下の解を⽤い、定ベクトル を時間依存にする
36 Appendix 〜⾮⻫次項を含む線形常微分⽅程式の解法〜 • として導いた以下の解を⽤い、定ベクトル を時間依存にする
37 Appendix 〜⾮⻫次項を含む線形常微分⽅程式の解法〜
38 Appendix 〜⾮⻫次項を含む線形常微分⽅程式の解法〜
39 Thank you