Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ブロックチェーンアプリのトランザクションに対するデータ分析 / PyCon-JP-2019
Search
odanado
PRO
September 16, 2019
Programming
0
360
ブロックチェーンアプリのトランザクションに対するデータ分析 / PyCon-JP-2019
odanado
PRO
September 16, 2019
Tweet
Share
More Decks by odanado
See All by odanado
Vitest Browser Mode への期待 / Vitest Browser Mode
odanado
PRO
2
3.4k
@nestjs/bull の活用について
odanado
PRO
0
1.3k
クラウド KMS の活用 / TOKYO BLOCKCHAIN TECH MEETUP 2022
odanado
PRO
0
1.1k
Vue.observable で状態管理 / vue-observable-state-management
odanado
PRO
4
2k
nuxtjs-axios-error-handling
odanado
PRO
0
310
スマートコントラクトに対する既知の攻撃とその対策 / bc.tokyo-21
odanado
PRO
0
210
最近のweb3.js事情 / bc.tokyo-19
odanado
PRO
2
460
YAPC::Tokyo 2019に スタッフ参加してみて / kichijojipm-18
odanado
PRO
1
2.2k
JavaScript + Dockerの知見 / knowledge-of-docker-in-javascript
odanado
PRO
9
54k
Other Decks in Programming
See All in Programming
テストコードのガイドライン 〜作成から運用まで〜
riku929hr
7
1.4k
為你自己學 Python
eddie
0
520
知られざるDMMデータエンジニアの生態 〜かつてツチノコと呼ばれし者〜
takaha4k
1
450
DevFest - Serverless 101 with Google Cloud Functions
tunmise
0
140
毎日13時間もかかるバッチ処理をたった3日で60%短縮するためにやったこと
sho_ssk_
1
550
PHPとAPI Platformで作る本格的なWeb APIアプリケーション(入門編) / phpcon 2024 Intro to API Platform
ttskch
0
390
Androidアプリのモジュール分割における:x:commonを考える
okuzawats
1
280
Lookerは可視化だけじゃない。UIコンポーネントもあるんだ!
ymd65536
1
130
PHPで学ぶプログラミングの教訓 / Lessons in Programming Learned through PHP
nrslib
4
1.1k
PHPUnitしか使ってこなかった 一般PHPerがPestに乗り換えた実録
mashirou1234
0
420
PHPカンファレンス 2024|共創を加速するための若手の技術挑戦
weddingpark
0
140
ATDDで素早く安定した デリバリを実現しよう!
tonnsama
1
1.9k
Featured
See All Featured
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Being A Developer After 40
akosma
89
590k
Agile that works and the tools we love
rasmusluckow
328
21k
4 Signs Your Business is Dying
shpigford
182
22k
The Power of CSS Pseudo Elements
geoffreycrofte
74
5.4k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.2k
Measuring & Analyzing Core Web Vitals
bluesmoon
5
210
Into the Great Unknown - MozCon
thekraken
34
1.6k
The Language of Interfaces
destraynor
155
24k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
38
1.9k
Why Our Code Smells
bkeepers
PRO
335
57k
YesSQL, Process and Tooling at Scale
rocio
170
14k
Transcript
ブロックチェーンアプリの トランザクションに 対するデータ分析 1 @odan3240
自己紹介 2
自己紹介 • Twitter: @odan3240 • ソフトウェアエンジニア • 会社: モバイルファクトリー
◦ チーム: ブロックチェーンチーム 3
自己紹介 • PyCon JP 参加 2回目 4
目次 • 発表の概要 • ブロックチェーン (Ethereum) とは • NFT /
NFT ゲーム とは • 本題 ◦ 方法 ◦ 分析例 5
発表の概要 6
発表の概要 • 2018年はブロックチェーンを用いた アプリ/ゲームが数多くリリースされた • ブロックチェーン上のデータは基本的にパブリック • 普通のゲームは内部の取引は非公開 •
パブリックに公開されているデータに対して BigQuery を用いて集計処理を行っているところを 伝えられると嬉しい 7
Ethereum とは 8
Ethereum とは • ブロックチェーンの1つ ◦ Bitcoin などと同じく仮想通貨を持ち流通している • ブロックチェーンアプリのプラットフォーム
◦ ブロックチェーン上にプログラムをデプロイできる ▪ AWS Lambda に関数をデプロイするイメージ ▪ 改ざんされない永続化 KVS 付き 9
Ethereum とは • コントラクト ◦ ブロックチェーン上にデプロイされたプログラム • トランザクション ◦ コントラクト上の関数呼び出し
• ブロック ◦ 約15秒間隔の世界中のトランザクションの集まり • ノード ◦ トランザクションを集めてブロックを作る ◦ 世界中に存在して P2P で同期している • ユーザー ◦ 普通の一般人 ◦ 固有の秘密鍵を持つ 10
Ethereum とは • Ethereum を利用する流れ ◦ ユーザーはトランザクションに対して秘密鍵で署名 ◦ ユーザーはトランザクションをノードに送信 ◦
ノードはトランザクションを 他のノードにブロードキャスト ◦ ノードはブロックを生成 • 特徴 ◦ 誰がどのトランザクションをいつ実行したかわかる 11
NFT とは 12
NFT とは • Non-Fungible Token = 代替不可能なトークン • お金は Fungible
(代替可能) ◦ Alice が持つ 100円 と Bob が持つ 100円は同じ 13
NFT とは • NFT の使われ方 ◦ ユーザーの一部アイテムの所有権の情報を ブロックチェーンに記録 • NFT
の取引 ◦ 運営からの購入 ◦ ユーザー間での売買 • NFT の取引も誰がいつ何を行ったかがわかる 14
本題 15
ブロックチェーンアプリのデータ分析 • ブロックチェーンアプリの特徴 ◦ 「誰がどのトランザクションをいつ実行したかわかる」 ◦ 「ゲームアイテム (NFT) の取引内容がパブリック」
• 第三者が分析や検証することが可能 ◦ 普通のアプリだと運営かアプリの プラットフォーマーしかできないこと 16
方法 • BigQuery の Public Dataset 上に Ethereum の トランザクションの情報が公開
されている ◦ https://cloud.google.com/blog/products/data-analytics/ether eum-bigquery-public-dataset-smart-contract-analytics ◦ https://github.com/blockchain-etl/ethereum-etl 17
方法 • データのスキーマ 18
方法 19
分析例 20
各月ごとのトランザクション数 • Ethereum 全体のトランザクション数 21
各月ごとのトランザクション数 22
各月ごとのトランザクション数 23
NFT の取引数 24
NFT の取引数 25
NFT の取引数 26
まとめ 27
まとめ • Ethereum はブロックチェーンの一種 • Ethereum を用いたブロックチェーンアプリや ゲームがリリースされている • Ethereum
のデータはパブリック ◦ 第三者が分析や検証を行える • 今回は方法を紹介した ◦ BigQuery を用いて集計 ◦ Pandas で加工 ◦ matplotlib で可視化 28