Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
R 4.1.0で導入された パイプ演算子 (|>)の紹介 / r_native_pipe
Search
Uryu Shinya
May 30, 2021
Programming
4
7.6k
R 4.1.0で導入された パイプ演算子 (|>)の紹介 / r_native_pipe
パイプ演算子の処理をmagrittrパッケージが提供するものと比較しながら解説します。
Uryu Shinya
May 30, 2021
Tweet
Share
More Decks by Uryu Shinya
See All by Uryu Shinya
Rの機械学習フレームワークの紹介〜tidymodelsを中心に〜 / machine_learning_with_r2024
s_uryu
0
670
地理空間データの機械学習への適用 / machine_learning_for_spatial_data
s_uryu
0
160
mandaRa: R言語ユーザのための新しい知識共有の場 / mandara_tokyor111
s_uryu
2
590
R言語入門 (R-4.3.3 2024年4月版) / introduction to r
s_uryu
8
6k
統・再現性・協力: 人為的過誤を防ぎ、未来へ進む策 / Integration, Reproducible, and Collaboration
s_uryu
1
670
Rによる大規模データの処理
s_uryu
2
2.3k
textlintr: Rユーザのためのtextlintによる校正
s_uryu
0
500
Rによるデータ可視化と地図表現
s_uryu
1
2.2k
データ分析入門 / tokupon-ds2022
s_uryu
4
5.6k
Other Decks in Programming
See All in Programming
飲食業界向けマルチプロダクトを実現させる開発体制とリアルな現状
hiroya0601
1
390
RailsのPull requestsのレビューの時に私が考えていること
yahonda
5
1.7k
Importmapを使ったJavaScriptの 読み込みとブラウザアドオンの影響
swamp09
4
1.2k
リリース8年目のサービスの1800個のERBファイルをViewComponentに移行した方法とその結果
katty0324
5
3.6k
Realtime API 入門
riofujimon
0
110
CPython 인터프리터 구조 파헤치기 - PyCon Korea 24
kennethanceyer
0
240
Googleのテストサイズを活用したテスト環境の構築
toms74209200
0
270
Why Spring Matters to Jakarta EE - and Vice Versa
ivargrimstad
0
960
『ドメイン駆動設計をはじめよう』のモデリングアプローチ
masuda220
PRO
7
430
[PyCon Korea 2024 Keynote] 커뮤니티와 파이썬, 그리고 우리
beomi
0
110
CSC305 Lecture 13
javiergs
PRO
0
130
Identifying User Idenity
moro
6
7.8k
Featured
See All Featured
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
25
1.8k
Keith and Marios Guide to Fast Websites
keithpitt
408
22k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
27
4.2k
Become a Pro
speakerdeck
PRO
24
5k
The Art of Programming - Codeland 2020
erikaheidi
51
13k
Imperfection Machines: The Place of Print at Facebook
scottboms
264
13k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
228
52k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
364
22k
A Philosophy of Restraint
colly
203
16k
Writing Fast Ruby
sferik
626
61k
Transcript
Ͱಋೖ͞Εͨ ύΠϓԋࢉࢠ c ͷհ Shinya Uryu @u_ribo uribo
Rにおける連続した処理の記述 パイプ演算⼦の使い⽅〜magrittrパッケージのパイプ演算⼦(%>%)との⽐較〜 2種類のパイプ、どちらを使う? RStudioでのパイプ演算⼦の利⽤ ༰ 1 2 3 4
3ʹ͓͚Δ࿈ଓͨ͠ॲཧͷهड़⁞ r <- rnorm(100) d <- matrix(r, ncol = 2)
plot(d) 処理ごとにオブジェクトへ保存する 中間オブジェクトを残して結果を参照できる …不要な中間オブジェクトを発⽣させる可能性もある 処理の流れ
3ʹ͓͚Δ࿈ଓͨ͠ॲཧͷهड़ plot( matrix( rnorm(100), ncol = 2)) 処理内容を⼊れ⼦構造で記述する 内側の結果が外側の関数に渡される ⼊⼒の⾯倒さ(処理順とは逆に⼊⼒する必要)
複雑な⼊れ⼦構造だとコードの可読性の低下 処理の流れ
3ʹ͓͚Δ࿈ଓͨ͠ॲཧͷهड़ library(magrittr) rnorm(100) %>% matrix(ncol = 2) %>% plot() パイプ演算⼦(%>%)を使う
パイプから⾒て左辺の値を右辺の値(関数)に与える 改⾏と字下げを⾏うことでコードの可読性も⾼まる 処理の流れ
ύΠϓԋࢉࢠͷ͍ํ ʙNBHSJUUSύοέʔδͷύΠϓԋࢉࢠ ͱͷൺֱʙ x %>% f() R 4.1.0 で導⼊された
|> (組み込みパイプ) x |> f() magrittrパッケージが提供する %>% f(x) と等価 左辺の値を右辺の第⼀引数に渡す x f()
ύΠϓԋࢉࢠͷ͍ํ ʙNBHSJUUSύοέʔδͷύΠϓԋࢉࢠ ͱͷൺֱʙ 右辺の扱いの違い magrittr … 関数、関数オブジェクトどちらもOK 組み込み …
関数呼び出しでなければいけない x %>% f x |> f #> Error: The pipe operator requires a function call as RHS
ύΠϓԋࢉࢠͷ͍ํ ʙNBHSJUUSύοέʔδͷύΠϓԋࢉࢠ ͱͷൺֱʙ 左辺の値を第⼀引数以外に渡すためのplace holder magrittr … 「.」を使う 組み込み
…デフォルトではplace holderを使えない x %>% f(..., x = .) x |> f(..., x = .) #> Error in is.data.frame(data) : object '.' not found
ύΠϓԋࢉࢠͷ͍ํ ʙNBHSJUUSύοέʔδͷύΠϓԋࢉࢠ ͱͷൺֱʙ 関数を定義 してplace holderを実現する my_lm <- function(x)
{ lm(mpg ~ cyl, data = x) } mtcars |> my_lm() または無名関数を利⽤
無名関数を利⽤してplace holderを実現する ύΠϓԋࢉࢠͷ͍ํ ʙNBHSJUUSύοέʔδͷύΠϓԋࢉࢠ ͱͷൺֱʙ mtcars |> (function(x) {
lm(mpg ~ cyl, data = x) })() 関数を定義または mtcars |> (\(x) lm(mpg ~ disp, data = x))() mtcars |> (\(passed_data) lm(mpg ~ disp, data = passed_data))() \(x) もR4.1.0で導⼊
試験中の機能? ύΠϓԋࢉࢠͷ͍ํ ʙNBHSJUUSύοέʔδͷύΠϓԋࢉࢠ ͱͷൺֱʙ Sys.setenv(`_R_USE_PIPEBIND_` = TRUE) mtcars |>
. => lm(mpg ~ disp, data = .) => の左辺「.」が右辺の処理内で「.」として渡される 組み込みパイプ処理でもplace holderとして機能する
ύΠϓԋࢉࢠͷ͍ํ ʙNBHSJUUSύοέʔδͷύΠϓԋࢉࢠ ͱͷൺֱʙ 実⾏速度では組み込み > magrittr ユーザが違いを認識できるほどではない https://www.tidyverse.org/blog/2020/11/magrittr-2-0-is-here/ f1
<- function(x) x f2 <- function(x) x f3 <- function(x) x f4 <- function(x) x p <- bench::mark( `1` = NULL %>% f1(), `4` = NULL %>% f1() %>% f2() %>% f3() %>% f4(), `1_native` = NULL |> f1(), `4_native` = NULL |> f1() |> f2() |> f3() |> f4()) 組み込み 組み込み magrittr magrittr
34UVEJPͰͷύΠϓԋࢉࢠͷར༻ ショートカット ⌘Command ⇧Shift M ^Control ⇧Shift M Windows +
+ + +
34UVEJPͰͷύΠϓԋࢉࢠͷར༻ 組み込みパイプのショートカットを利⽤するには 👉 ※2021年5⽉30⽇現在は Preview, Daily Buildでのみ利⽤可能 メニュー Preferences... Code
|> |> の順に選択した画⾯ チェック
छྨͷύΠϓɺͲͪΒΛ͏ magrittr (%>%) 組み込み (|>) R 4.1.0以上縛り パッケージのインストール 導⼊しやすさ 実⾏速度
place holder magrittrをImportしたパッケージが多数 知名度 v2.0で改善 magrittrより⾼速 「.」を指定する 関数を定義する 特にtidyverseユーザ ⾼い まだ低い