Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
初めての機械学習PJを やってみて得た知見
Search
yaginuuun
November 05, 2019
Technology
2
4.5k
初めての機械学習PJを やってみて得た知見
Connehito Marché vol.6 〜機械学習・データ分析市〜 / 2019-11-05
にて発表
yaginuuun
November 05, 2019
Tweet
Share
More Decks by yaginuuun
See All by yaginuuun
メルカリホーム画面におけるレコメンド改善事例 - Long-tailを考慮した辞書拡張
shyaginuma
3
1.5k
メルカリにおけるA/Bテストワークフローの改善 これまでとこれから
shyaginuma
2
1.8k
メルカリにおけるA/Bテスト標準化への取り組み
shyaginuma
21
13k
A/BテストにおけるVariance reduction
shyaginuma
2
2.5k
過去コンペベースの学習をやってみたら意外と良かった話
shyaginuma
0
730
Kaggleもくもく会イントロ
shyaginuma
0
200
1on1 SQL Introduction at Globis
shyaginuma
1
1.3k
SlackへのKPI通知Botを作ったら いろいろ捗った話
shyaginuma
1
2.2k
BigQueryMLハンズオン勉強会
shyaginuma
3
940
Other Decks in Technology
See All in Technology
(非公式) AWS Summit Japan と 海浜幕張 の歩き方 2025年版
coosuke
PRO
1
320
Clineを含めたAIエージェントを 大規模組織に導入し、投資対効果を考える / Introducing AI agents into your organization
i35_267
4
1.3k
エンジニア向け技術スタック情報
kauche
0
110
Oracle Audit Vault and Database Firewall 20 概要
oracle4engineer
PRO
2
1.6k
2025/6/21 日本学術会議公開シンポジウム発表資料
keisuke198619
2
470
TerraformをSaaSで使うとAzureの運用がこんなに楽ちん!HCP Terraformって何?
mnakabayashi
0
300
新卒3年目の後悔〜機械学習モデルジョブの運用を頑張った話〜
kameitomohiro
0
370
DenoとJSRで実現する最速MCPサーバー開発記 / Building MCP Servers at Lightning Speed with Deno and JSR
yamanoku
1
260
AIの最新技術&テーマをつまんで紹介&フリートークするシリーズ #1 量子機械学習の入門
tkhresk
0
120
白金鉱業Meetup_Vol.19_PoCはデモで語れ!顧客の本音とインサイトを引き出すソリューション構築
brainpadpr
2
470
データプラットフォーム技術におけるメダリオンアーキテクチャという考え方/DataPlatformWithMedallionArchitecture
smdmts
5
550
キャディでのApache Iceberg, Trino採用事例 -Apache Iceberg and Trino Usecase in CADDi--
caddi_eng
0
170
Featured
See All Featured
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
790
Navigating Team Friction
lara
187
15k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
660
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
26k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
480
Designing for Performance
lara
609
69k
Making Projects Easy
brettharned
116
6.2k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
281
13k
It's Worth the Effort
3n
184
28k
Being A Developer After 40
akosma
90
590k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.3k
Transcript
初めての機械学習PJを やってみて得た知見 Connehito Marché vol.6 〜機械学習・データ分析市〜 グロービス 柳沼慎哉 / 2019-11-05
自己紹介 • データサイエンティスト@グロービス ◦ DW保守運用 ◦ ダッシュボード構築 ◦ プロダクト分析 ◦
レコメンド開発 ⬅ Now • 2018新卒(もうすぐ三年目!!) • kaggleもくもく会@麹町 運営してます twitter: @yaginuuun
会社紹介 • 国内最大規模の経営大学院、ビジネススクールを運営 • 最近e-learningへ進出(グロービス学び放題) ◦ 時間、場所の制約なく学べるサービスの提供 • 他にも色々やってます ◦
ベンチャーキャピタルによる投資 ◦ 書籍の出版 ◦ G1サミット(経営者会議)の運営
何をやったか グロービス知見録という自社メディアに学び放題への導線が存在
どうやったのか 従来の仕組み:タグ一致 • 知見録と学び放題でタグが一致したコンテンツを表示 • タグ運用が手動(たまに漏れが発生) 改良後:コンテンツ同士の類似度 • 知見録と学び放題で類似度の高いコンテンツを表示 •
タグに寄らず、関連コンテンツを表示できる(漏れが発生しない)
結果
結果
得た知見
• リーン的な考え方に近い(Minimum Viable Product) • 改善のポテンシャルが見える • 結果を見せながら議論できるので担当者間の連携がしやすくなる 知見① 簡単でも良いのでまず結果を見える形にする
• エムスリーの西場さんがおっしゃっていて、自分でやって改めて実感 ◦ 成功確率高い ◦ 工数少ない 知見② ルール→アルゴリズムへの置き換えは有効 エムスリーの機械学習チームビルディングの考え方 by
@m_nishiba / @Machine Learning Team Building Pitchより引用
• 今回のPJの一部のコードは過去にメルカリコンペに取り組んだ時のものを 流用 知見③ kaggleは役に立つ
• 今回のPJの一部のコードは過去にメルカリコンペに取り組んだ時のものを 流用 • こんな資料もあります:カグルとジツム 知見③ kaggleは役に立つ
まとめ • いろんな知見が得られた ◦ 超シンプルでも良いので一旦アウトプットを見える形にすると進みが良 い ◦ ルールベース → アルゴリズムベースへの置き換えは有効
◦ kaggleは役に立つ • 一方でやらなきゃいけないこともたくさん ◦ モデルの運用周り ◦ パイプライン設計、構築 ◦ 後々手を入れやすい設計、コーディング • 常にやっていき