Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
初めての機械学習PJを やってみて得た知見
Search
yaginuuun
November 05, 2019
Technology
2
4.4k
初めての機械学習PJを やってみて得た知見
Connehito Marché vol.6 〜機械学習・データ分析市〜 / 2019-11-05
にて発表
yaginuuun
November 05, 2019
Tweet
Share
More Decks by yaginuuun
See All by yaginuuun
メルカリホーム画面におけるレコメンド改善事例 - Long-tailを考慮した辞書拡張
shyaginuma
3
1.2k
メルカリにおけるA/Bテストワークフローの改善 これまでとこれから
shyaginuma
2
1.5k
メルカリにおけるA/Bテスト標準化への取り組み
shyaginuma
21
12k
A/BテストにおけるVariance reduction
shyaginuma
2
2.1k
過去コンペベースの学習をやってみたら意外と良かった話
shyaginuma
0
660
Kaggleもくもく会イントロ
shyaginuma
0
170
1on1 SQL Introduction at Globis
shyaginuma
1
1.3k
SlackへのKPI通知Botを作ったら いろいろ捗った話
shyaginuma
1
2.1k
BigQueryMLハンズオン勉強会
shyaginuma
3
880
Other Decks in Technology
See All in Technology
プロダクトチームへのSystem Risk Records導入・運用事例の紹介/Introduction and Case Studies on Implementing and Operating System Risk Records for Product Teams
taddy_919
1
170
クライアントサイドでよく使われる Debounce処理 をサーバサイドで3回実装した話
yoshiori
1
150
10分でわかるfreeeのQA
freee
1
3.4k
顧客が本当に必要だったもの - パフォーマンス改善編 / Make what is needed
soudai
24
6.7k
「視座」の上げ方が成人発達理論にわかりやすくまとまってた / think_ perspective_hidden_dimensions
shuzon
2
130
Figma Dev Modeで進化するデザインとエンジニアリングの協働 / figma-with-engineering
cyberagentdevelopers
PRO
1
430
プロダクトエンジニアが活躍する環境を作りたくて 事業責任者になった話 ~プロダクトエンジニアの行き着く先~
gimupop
1
460
生成AIの強みと弱みを理解して、生成AIがもたらすパワーをプロダクトの価値へ繋げるために実践したこと / advance-ai-generating
cyberagentdevelopers
PRO
1
180
現地でMeet Upをやる場合の注意点〜反省点を添えて〜
shotashiratori
0
520
WINTICKETアプリで実現した高可用性と高速リリースを支えるエコシステム / winticket-eco-system
cyberagentdevelopers
PRO
1
190
バクラクにおける可観測性向上の取り組み
yuu26
3
410
AIを駆使したゲーム開発戦略: 新設AI組織の取り組み / sge-ai-strategy
cyberagentdevelopers
PRO
1
130
Featured
See All Featured
How To Stay Up To Date on Web Technology
chriscoyier
788
250k
Designing for humans not robots
tammielis
249
25k
Statistics for Hackers
jakevdp
796
220k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
32
1.8k
Rebuilding a faster, lazier Slack
samanthasiow
79
8.6k
How to Think Like a Performance Engineer
csswizardry
19
1.1k
The Pragmatic Product Professional
lauravandoore
31
6.3k
Facilitating Awesome Meetings
lara
49
6k
Fireside Chat
paigeccino
32
3k
Into the Great Unknown - MozCon
thekraken
31
1.5k
Optimising Largest Contentful Paint
csswizardry
33
2.9k
Documentation Writing (for coders)
carmenintech
65
4.4k
Transcript
初めての機械学習PJを やってみて得た知見 Connehito Marché vol.6 〜機械学習・データ分析市〜 グロービス 柳沼慎哉 / 2019-11-05
自己紹介 • データサイエンティスト@グロービス ◦ DW保守運用 ◦ ダッシュボード構築 ◦ プロダクト分析 ◦
レコメンド開発 ⬅ Now • 2018新卒(もうすぐ三年目!!) • kaggleもくもく会@麹町 運営してます twitter: @yaginuuun
会社紹介 • 国内最大規模の経営大学院、ビジネススクールを運営 • 最近e-learningへ進出(グロービス学び放題) ◦ 時間、場所の制約なく学べるサービスの提供 • 他にも色々やってます ◦
ベンチャーキャピタルによる投資 ◦ 書籍の出版 ◦ G1サミット(経営者会議)の運営
何をやったか グロービス知見録という自社メディアに学び放題への導線が存在
どうやったのか 従来の仕組み:タグ一致 • 知見録と学び放題でタグが一致したコンテンツを表示 • タグ運用が手動(たまに漏れが発生) 改良後:コンテンツ同士の類似度 • 知見録と学び放題で類似度の高いコンテンツを表示 •
タグに寄らず、関連コンテンツを表示できる(漏れが発生しない)
結果
結果
得た知見
• リーン的な考え方に近い(Minimum Viable Product) • 改善のポテンシャルが見える • 結果を見せながら議論できるので担当者間の連携がしやすくなる 知見① 簡単でも良いのでまず結果を見える形にする
• エムスリーの西場さんがおっしゃっていて、自分でやって改めて実感 ◦ 成功確率高い ◦ 工数少ない 知見② ルール→アルゴリズムへの置き換えは有効 エムスリーの機械学習チームビルディングの考え方 by
@m_nishiba / @Machine Learning Team Building Pitchより引用
• 今回のPJの一部のコードは過去にメルカリコンペに取り組んだ時のものを 流用 知見③ kaggleは役に立つ
• 今回のPJの一部のコードは過去にメルカリコンペに取り組んだ時のものを 流用 • こんな資料もあります:カグルとジツム 知見③ kaggleは役に立つ
まとめ • いろんな知見が得られた ◦ 超シンプルでも良いので一旦アウトプットを見える形にすると進みが良 い ◦ ルールベース → アルゴリズムベースへの置き換えは有効
◦ kaggleは役に立つ • 一方でやらなきゃいけないこともたくさん ◦ モデルの運用周り ◦ パイプライン設計、構築 ◦ 後々手を入れやすい設計、コーディング • 常にやっていき