Upgrade to Pro — share decks privately, control downloads, hide ads and more …

ダイナミックプライシング とその実例

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.

ダイナミックプライシング とその実例

Avatar for 木村彩恵(skmr2348)

木村彩恵(skmr2348)

November 11, 2024
Tweet

More Decks by 木村彩恵(skmr2348)

Other Decks in Research

Transcript

  1. AI 7 ▪ 企業が価格を動的に決定する戦略 ▪ 前提として、価格弾力性が異なる需要曲線が複数存在する市場である ▪ 価格弾力性:需要への価格の影響度合い ▪ 企業の市場支配力が強い(独占企業に近い)ほど、自由に価格が設定で

    きるため、ダイナミックプライシングに向いている ダイナミックプライシング 数量 数量 価格 価格 <価格弾力性が大きい> <価格弾力性が小さい> 価格が上がっても 需要があまり減少しない 価格が上がると 需要が大きく減少する
  2. AI 8 ▪ 顧客セグメント ▪ 航空チケットの場合、ビジネス客は直前に購入するため、価格弾力性が 低く、高い価格でも購入する。一方、観光客は計画的に旅行するため価 格弾力性が高い。 ▪ 季節性

    ▪ ホテルの場合、長期休みは価格弾力性が低く、高価格でも予約される が、オフシーズンでは価格弾力性が高くなる ▪ 利用頻度 ▪ リピーターやロイヤルティプログラムのメンバーは価格弾力性が低いこ とがある(付加価値を重視する傾向がある) 異なる価格弾力性の需要曲線が複数存在する状況の例
  3. AI 9 ▪ 右下の書籍を参考にダイナミックプライシングのモデルを紹介 ▪ モデルの前提は下記 ▪ 顧客は近視眼的である ▪ 支払っても良いという額が販売価格を上回ると即購入する

    ▪ 在庫補充はない ▪ 無限母集団モデルとする ▪ 購入に訪れる顧客は毎回新規顧客とみなす ▪ 独占企業である ▪ 競合企業の影響を受けない ▪ 独立需要である ▪ 代替商品の影響を受けないものとする 1製品の場合のダイナミックプライシングのモデル(1/2)
  4. AI 10 ▪ ダイナミックプライシングのモデルは大きく2つに分けられる ▪ 確定的な需要を想定するモデル ▪ 異なる需要曲線ごとに収益を最大とする価格を計算する ▪ 需要曲線は例えば、リードタイム(販売終了までの残り期間)ごとにを

    分ける等 ▪ 実装がシンプルだが、需要の不確実性を考慮できない ▪ ▪ 確率的な需要を想定するモデル(Gallego and van Ryzin)[1] ▪ 在庫やリードタイムの様々なパターンで、収益を最大とする価格を 求める ▪ 様々なパターンに対応できるが計算量が大きい 1製品の場合のダイナミックプライシングのモデル(2/2) [1]https://business.columbia.edu/sites/default/files-efs/pubfiles/3943/va nryzin_optimal_dynamic_pricing.pdf
  5. AI 11 ▪ 販売期間[0, T]のある時点t ∈[0, T]の価格をp t 、数量をx t

    で表す。時刻tにお ける需要曲線をp = d t (x)(数量xに対する価格p)とするとき、収益を最大と する数量x t *を以下の最適化問題の解で定義できる ▪ 目的関数 ▪ 制約   確定的な需要を想定するモデル (在庫制約、Cは初期在庫) 収益
  6. AI 12 ▪ 需要過程は、価格pによって決定される到着率λ(p)のポアソン過程に従う ▪ 残りの販売期間t∈[T, 0]と在庫量c(≦C)を状態として、各状態で販売期間終了 (t=0)までの収益を最大化するような最適価格を求める ▪ J*(t,

    c)を在庫c、残りの販売期間tから販売期間終了までの期待収益の最 大値とする ▪ 状態(t, c)で到着率λ(p)とした場合の販売終了までの期待収益V(t, c, λ)とす ると、J*(t, c)は以下のように定義できる ▪ さらに、期待収益の最大値となった到着率をλ*(t, c)で表す 確率的な需要を想定するモデル
  7. AI 13 ▪ ある到着率λにおける販売終了までの期待収益V(t, c, λ)は、最適性の原理に より次式で定義できる(価格p = d(λ)とする) 確率的な需要を想定するモデル

    在庫 期間 0 T t t - dt c 0 p =d(λ) J*(t-dt, c-1) J*(t-dt, c) 動的計画法によりt = 0からJ*(t,c)とλ*(t,c)を演算する 購入した場合の最大期待収益 購入しなかった場合 の最大期待収益 購入確率
  8. AI 16 ▪ 予約実績データとしてHotel booking demandデータセットを使用 ▪ ホテルの種類 ▪ 部屋の種類

    ▪ キャンセルされたかどうか ▪ 予約日 ▪ 料金 ▪ 到着日 ▪ 宿泊日数 ▪ 宿泊人数(大人や子供の人数) ▪ リードタイム(予約してから宿泊するまでの日数) ▪ etc 使用データ https://www.kaggle.com/datasets/jessemostipak/hotel-booking-demand
  9. AI 17 ▪ 例題で使用するために、以下のような加工を実施 ▪ ホテルの種類は「City Hotel」のみとする ▪ 部屋の種類は「タイプA」のみとする ▪

    キャンセルされたデータは除去する ▪ データには到着日と宿泊日数のみが含まれるため、宿泊日ごとにデータ を変換する ▪ 例えば、8/1に3泊→8/1, 8/2, 8/3に1泊ずつに変換する ▪ 2016年のデータのみとする データの加工
  10. AI 20 ▪ 需要に影響を与えそうな特徴量から、線形回帰を用いて影響が大きいものを 特定 ▪ 月 ▪ 曜日 ▪

    平均リードタイム ▪ 1部屋あたりの大人の平均人数 ▪ 1部屋あたりの子供の平均人数 ▪ ▪ 需要に影響を与える要因の分析 python statsmodelを用いた線形回帰
  11. AI 22 ▪ 月、曜日、リードタイムごとに需要曲線を演算する ▪ リードタイムは〜7日、8日〜30日、31日〜90日、91日〜180日、181 日〜365日のカテゴリ変数とする 需要曲線の計算 ①価格の割合を計算 ②価格ごとの宿泊数の期待値

    を計算 (割合x1日あたり平均宿泊数) ③価格が高い順に期待値の累 積和を計算する(=需要曲線) より安い価格であれば予約したと考えて累積和をとる
  12. AI 23 ▪ 7月の金曜日を例に、在庫制約を無視してリードタイムごとの収益曲線と最適 価格は以下の通り リードタイムごとの最適価格の計算 最適価格=125 数量=23.4 最適価格=100 数量=27.4

    最適価格=70 数量=150.8 最適価格=60 数量=93.6 このホテルの場合は直前になるほど価格弾力性が低くなっている 数量の合計が在庫制約(C=600)を満たしている 最適価格=120 数量=10.8 181日〜365日 91日〜180日 31日〜90日 7日〜30日 〜7日