Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データ品質を重視したデータ基盤プロダクト開発
Search
Toshiki Tsuchikawa
April 11, 2023
Technology
8
2.5k
データ品質を重視したデータ基盤プロダクト開発
データ基盤アーキテクチャトレンド 2023 LTとパネルで学ぶ (
https://findy.connpass.com/event/278140/
)
の登壇資料になります。
Toshiki Tsuchikawa
April 11, 2023
Tweet
Share
More Decks by Toshiki Tsuchikawa
See All by Toshiki Tsuchikawa
タイミーのデータモデリング事例と今後のチャレンジ
ttccddtoki
6
3.1k
タイミーのデータ活用を支えるdbt Cloud導入とこれから
ttccddtoki
2
1.1k
タイミーにおけるデータ活用の未来
ttccddtoki
0
250
急成長する組織を支えるデータ基盤のこれまで、これから
ttccddtoki
6
810
アジリティの高いデータ基盤を目指して
ttccddtoki
4
1.7k
DMBOKを参考にしたデータマネジメントの取り組み
ttccddtoki
6
3k
dbt_Cloudとdbt_Core併用の試み
ttccddtoki
3
1.5k
タイミーの未来を支えるデータ基盤プロダクト
ttccddtoki
1
970
datatech-jp Casual Talks #3
ttccddtoki
0
1.1k
Other Decks in Technology
See All in Technology
動画データのポテンシャルを引き出す! Databricks と AI活用への奮闘記(現在進行形)
databricksjapan
0
150
[2025-09-30] Databricks Genie を利用した分析基盤とデータモデリングの IVRy の現在地
wxyzzz
0
490
定期的な価値提供だけじゃない、スクラムが導くチームの共創化 / 20251004 Naoki Takahashi
shift_evolve
PRO
3
330
生成AIとM5Stack / M5 Japan Tour 2025 Autumn 東京
you
PRO
0
220
「AI駆動PO」を考えてみる - 作る速さから価値のスループットへ:検査・適応で未来を開発 / AI-driven product owner. scrummat2025
yosuke_nagai
4
610
ACA でMAGI システムを社内で展開しようとした話
mappie_kochi
1
280
GC25 Recap+: Advancing Go Garbage Collection with Green Tea
logica0419
1
420
Exadata Database Service on Dedicated Infrastructure(ExaDB-D) UI スクリーン・キャプチャ集
oracle4engineer
PRO
2
5.4k
AI ReadyなData PlatformとしてのAutonomous Databaseアップデート
oracle4engineer
PRO
0
200
AWSにおけるTrend Vision Oneの効果について
shimak
0
130
Where will it converge?
ibknadedeji
0
190
空間を設計する力を考える / 20251004 Naoki Takahashi
shift_evolve
PRO
3
390
Featured
See All Featured
It's Worth the Effort
3n
187
28k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Designing Experiences People Love
moore
142
24k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.2k
Producing Creativity
orderedlist
PRO
347
40k
Into the Great Unknown - MozCon
thekraken
40
2.1k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
114
20k
A Tale of Four Properties
chriscoyier
160
23k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
61k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.9k
Transcript
2023/04/11 土川稔生 データ品質を重視した データ基盤プロダクト開発 @tvtg_24 データ基盤アーキテクチャトレンド 2023 LTとパネルで学ぶ
土川 稔生 (Tsuchikawa Toshiki) • 株式会社タイミーに2020年入社 • DRE (Data Reliability
Engineering) チーム ◦ データエンジニアとしてデータ基盤プロダク トを構築 ◦ 現在はプロダクトオーナーとして、データ基 盤プロダクト作りに励む • Twitter: @tvtg_24 2 自己紹介
目次 • データ品質とは...? • タイミーのデータ品質向上のために
1 データ品質とは...???
データ利用者の期待と要求を 満たす度合い DMBOK 13章より
高品質なデータとは... データニーズA 経営に関する意思決定 • 前日分のデータを用いる • データにズレがあると意思決定を 間違い、大きな問題になる データニーズB 機械学習アルゴリズム
• リアルタイムに近いデータを用いる • データに多少誤差があっても精度 には大きな影響がない データ基盤プ ロダクト ⭕ リアルタイム性 高 データの正確性 低 リアルタイム性 低 データの正確性 高
高品質なデータとは... データニーズA 経営に関する意思決定 • 前日分のデータを用いる • データにズレがあると意思決定を 間違い、大きな問題になる データニーズB 機械学習アルゴリズム
• リアルタイムに近いデータを用いる • データに多少誤差があっても精度 には大きな影響がない データ基盤プ ロダクト ❌ リアルタイム性 高 データの正確性 高
高品質なデータとは... • あらゆるデータに対応できる最強なデータ基盤は高品質なデータを提供しているとは言えない ◦ データ利用ユーザーはそんなものは求めていない • 余分な時間と工数の投資により、大事な開発に時間が使えなくなる • 運用も辛くなり、開発チームに負担がかかる バランスが大切🥖
データの目的と提供データの品質が合致していることが大事
2 タイミーのデータ品質向上の ために
現在のデータ基盤概要
品質の高いデータ提供のために 適時性 一意性 完全性 元データが更新されてからどの くらいの遅延で分析可能になる か データに重複はないか データに欠損はないか
データ品質目標はバランスが大事 データ利用ユーザ 適時性??? データが新しければ新し いほど嬉しい データ基盤開発者 品質守るために無限労 働つらい... ちょうどいい感じのバランスを取る 必要がある
データニーズを把握し、品質を交渉していく データ利用ユーザ こういうケースで、こういう 課題を解決するためにデー タ利用をしてます データ基盤開発者 普段どのようにデータを 利用していますか? (他のユーザーも 困っていたな...
ちょっとチームで話 し合おう...) ですが現状の最新データ が少し古くて、こういう運用 の際に困っています
14 Service Level Indicator サービスの品質を守るための指標 SLI SLA SLO Service Level
Agreement SLIで定義した指標に関するサービス提供者と の契約 (破った時にどうするかなど) Service Level Objective SLIで定義した指標の具体的な目安 一般的なSLI, SLA, SLOの定義
15 Service Level Indicator データパイプラインの適時性 (データソースの更新からど のくらい遅れて転送先で実用可能になるか) SLI SLA SLO
Service Level Agreement データソースごとにデータ使用者と結ばれた適時性 に関する契約 破った場合はポストモーテムを実施 例: データソースAは1日の適時性での転送 Service Level Objective DREチーム内で決定されたデータソースごとの適 時性の目標 例: データソースAは2hourの適時性での転送 DREチームにおけるSLI, SLA, SLOの定義
SLAが定義されていると...! データ利用ユーザ データ基盤開発者 どんなデータがどんな状態 で利用可能なのかがわか りやすい! データの細かい状態まで 管理していて信頼して使え る...!!! データの品質を無理せず
守れる!! 品質を担保しながらユー ザーのためのデータ基盤 開発に時間を使える !!
まだまだ道半ばなのでお力を貸してください!!! Timee Product Org Entrance Book https://timee.notion.site/timee/Timee-Product-Org-Entrance-Book-b7380eb4f6954e29b2664fe6f5e775f9