Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DMBOKを参考にしたデータマネジメントの取り組み
Search
Toshiki Tsuchikawa
November 16, 2023
Technology
6
3.1k
DMBOKを参考にしたデータマネジメントの取り組み
データマネジメントチームのマネジメントの方が難しかった話 のイベント登壇用
https://timeedev.connpass.com/event/299088/
Toshiki Tsuchikawa
November 16, 2023
Tweet
Share
More Decks by Toshiki Tsuchikawa
See All by Toshiki Tsuchikawa
タイミーのデータモデリング事例と今後のチャレンジ
ttccddtoki
6
3.8k
タイミーのデータ活用を支えるdbt Cloud導入とこれから
ttccddtoki
2
1.2k
タイミーにおけるデータ活用の未来
ttccddtoki
0
310
急成長する組織を支えるデータ基盤のこれまで、これから
ttccddtoki
6
840
アジリティの高いデータ基盤を目指して
ttccddtoki
4
1.8k
dbt_Cloudとdbt_Core併用の試み
ttccddtoki
3
1.5k
データ品質を重視したデータ基盤プロダクト開発
ttccddtoki
8
2.5k
タイミーの未来を支えるデータ基盤プロダクト
ttccddtoki
1
1k
datatech-jp Casual Talks #3
ttccddtoki
0
1.1k
Other Decks in Technology
See All in Technology
pmconf 2025 大阪「生成AI時代に未来を切り開くためのプロダクト戦略:圧倒的生産性を実現するためのプロダクトサイクロン」 / The Product Cyclone for Outstanding Productivity
yamamuteki
3
2.5k
個人から巡るAI疲れと組織としてできること - AI疲れをふっとばせ。エンジニアのAI疲れ治療法 ショートセッション -
kikuchikakeru
5
1.9k
レガシーシステム刷新における TypeSpec スキーマ駆動開発のすゝめ
tsukuha
3
680
クラスタ統合リアーキテクチャ全貌~1,000万ユーザーのウェルネスSaaSを再設計~
hacomono
PRO
0
150
入社したばかりでもできる、 アクセシビリティ改善の第一歩
unachang113
2
350
不確実性に備える ABEMA の信頼性設計とオブザーバビリティ基盤
nagapad
4
7.2k
その意思決定、まだ続けるんですか? ~痛みを超えて未来を作る、AI時代の撤退とピボットの技術~
applism118
42
23k
事業状況で変化する最適解。進化し続ける開発組織とアーキテクチャ
caddi_eng
1
6.9k
TypeScript 6.0で非推奨化されるオプションたち
uhyo
15
5k
ABEJA FIRST GUIDE for Software Engineers
abeja
0
3.2k
生成AIが出力するテストコードのリアル よくあるコードと改善のヒント
starfish719
0
140
身近なCSVを活用する!AWSのデータ分析基盤アーキテクチャ
koosun
0
4k
Featured
See All Featured
A Modern Web Designer's Workflow
chriscoyier
697
190k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
What's in a price? How to price your products and services
michaelherold
246
12k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.2k
Code Review Best Practice
trishagee
72
19k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Why You Should Never Use an ORM
jnunemaker
PRO
60
9.6k
Unsuck your backbone
ammeep
671
58k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Scaling GitHub
holman
464
140k
Transcript
2023/11/16 土川稔生 DMBOKを参考にしたデータマネジメントの取り組み @tvtg_24 データマネジメントチームのマネジメントの方が難しかった話
目次 • DMBOKとは? • DMBOKに取り掛かる順番 • 13章 データ品質
土川 稔生 (Tsuchikawa Toshiki) 株式会社タイミーに2020年入社 DRE (Data Reliability Engineering) チーム
1人目データエンジニアとしてデータ基盤を構築 現在はプロダクトオーナーとして、データ基盤プロダクト作りに 励む 3 自己紹介
4
5
6
DMBOKとは? 「Data Management Body Of Knowledge」の略で、「データマネジメント知識体系ガイド」と訳される。 データマネジメントプロフェッショナルにとって有益な資料かつ指針となることを目指し、 データ管理のもっとも信頼できる入門書となるよう編集される。 2nd editionであるDMBOK
2は全17章からなり、 データマネジメントの知識領域を定義した DAMAホイール図で元に説明される。
DMBOKとは? https://www.dama-japan.org/Introduction.html より画像引用
どれからやったらいいの???
DMBOKピラミッド (Aiken) Aikenのピラミッド https://blogs.sap.com/2020/07/09/why-hr-data-management-strategy-is-important-in-your-hr-transformation/ より画像引用 フェーズ1 フェーズ2 フェーズ3 フェーズ4
そんな順序よく進まなかった...
タイミー初期 (2020年ごろ) 💡様々なデータを統合したデータ分析ニーズ Redashがプロダクトのデータベースに接続されていて、データ分析・可視化業務がされていた。 少し経つとユーザー行動ログ、広告、 CRMツールなどのデータが溜まり、データの統合ニーズが出てきた。 → この頃はエンタープライズなデータウェアハウス製品がすでにあった。 embulk, digdagなどの収集ツールを利用しながらデータを統合する。
データをひたすら収集しながら社内データ利用ユーザーのニーズをひたすら叶えていくフェーズ。 収集 活用 ・・・
DMBOKピラミッドでみると...? Aikenのピラミッド https://blogs.sap.com/2020/07/09/why-hr-data-management-strategy-is-important-in-your-hr-transformation/ より画像引用 フェーズ1 フェーズ2 フェーズ3 フェーズ4 取り組めていそうな項目 •
Data Storage & Operations データストレージ周りは、データソース管理者であるプロダ クト側などで多く運用されていた。 一部のログなどのデータについてはデータを利用可能にする ため、データの生成・収集なども行った。 • Data Integration & interoperability ETL、オーケストレーションツールを用いて、データ ソースごとに転送頻度、変換・マスキング要件を適用。 • Data warehousing / Business intelligence 統合データの分析環境・可視化ツールなどを準備した。 • Data Security マスキングなどにより一部取り組めた。
データパイプラインの増加によって... 🔥特にデータ品質周りにおいてたくさんの問題が起こった データソースの抽出しているツールがバラバラだったため、たくさんのパイプラインができる。 当時は選択肢も少なく仕方がなかった ... 自分たちでインフラ管理していることもあり、色々なパイプラインで障害が発生する。 データエンジニアも少なかった (ほぼ1人) ため、必死の対応が続く。 収集
活用 ・・・ 🔥 🔥 🔥 🔥
他のデータマネジメント領域に取り 組む余裕がない...
早めにデータ品質に取り組んだ!
データ品質 (Data Quality) における取り組み フェーズ1 フェーズ2 フェーズ3 フェーズ4 💡データ品質とは...データ利用者の期待と要求を満たす度合い データパイプラインに何か障害が発生した際の即対応により、
品質が高いデータが保守できていそう。 しかし、品質高いデータは分析ユーザーにとって本当に必要なのか ? 必死に守っている品質の高さは分析のその先にあるビジネス価値に 繋がっているのだろうか?
データ品質 (Data Quality) とは?? 一意性 データに重複はないか THE SIX PRIMARY DIMENSIONS
FOR DATA QUALITY ASSESSMENT より 適時性 一意性 完全性 一貫性 正確性 有効性
データ品質 (Data Quality) における取り組み 適時性の定義と保守 データが日々の業務での意思決定に利用されることが多かった。 その時点で利用しているデータが、いつ時点のデータを示すかが大事な指標とな るため、適時性を最初に保守対象に選定した。 正確に測ると、1つの行データごとに (ユーザーにデータが届いた時刻
- データが生成された時刻) を比較して計測を行うことになる。 工数軽くするために、BigQueryの最終更新日時メタデータと現在時刻を比較する ことで、適時性の保守を試みた。 SLI, SLO, SLAを分析ユーザーと定義、公開し保守・改善を行った 適時性 元データが更新されてからどの くらいの遅延で分析可能になる か
20 Service Level Indicator データパイプラインの適時性 (データソースの更新からど のくらい遅れて転送先で実用可能になるか) SLI SLA SLO
Service Level Agreement データソースごとにデータ使用者と結ばれた適時性 に関する契約 破った場合はポストモーテムを実施 例: データソースAは1日の適時性での転送 Service Level Objective DREチーム内で決定されたデータソースごとの適 時性の目標 例: データソースAは2hourの適時性での転送 データ品質 (Data Quality) における取り組み
21 データ品質 (Data Quality) における取り組み SLAを決める際、気をつけたこと。 ユーザーが求める品質と、こちら側が提供できる品質で時間を調整する必要がある。 ユーザーは基本的に品質が高ければ高いほど嬉しくはあるので、データを利用したビジネスの目的を把握し、 こちらから品質を提案しにいくことが大切そう。 またSLAはデータ利用ユーザからアクセスしやすい場所においておき、データ利用の目的やデータの種類に
よってアップデートしていくことが必要。 (難しい...)
22 データ品質 (Data Quality) における取り組み こうして、DRE (データ基盤開発チーム) は障害対応を計画的に行うことができるようになった。 空いた余力で、他の開発に取り組む時間の確保にも成功した。 また、データ品質が可視化されたことにより、品質改善への取り組みも多く発生した。
データ利用ユーザーもどれくらいの期待値でデータが利用できるのか把握できるし、改善が回っていくので、 信頼してデータを利用できるようになる。 → 早めにデータ品質に取り組んでよかった !!!
現在やっている取り組みの紹介 Aikenのピラミッド https://blogs.sap.com/2020/07/09/why-hr-data-management-strategy-is-important-in-your-hr-transformation/ より画像引用 フェーズ1 フェーズ2 フェーズ3 フェーズ4 データサイエンス・MLOps 利用者アセスメントレベル測定
・向上 dbtによるデータモデリング Lookerによる BIユーザービリティ向上
まとめ DMBOKはデータマネジメントの知識や、取り組むべき順番などがまとめられている。 しかし、順番通りこなすのは難しかった ... タイミーでは障害が頻発していた関係で、 13章のデータ品質に早急に取り組まざるをえなかった。 結果としては、データ基盤開発側もデータ利用ユーザー側にもポジティブなことは多く、 とても良い取り組みになった。 そのおかげで、その他のデータマネジメント関連の取り組みを行う余裕が生まれ、 データマネジメントの向上ができている
!!
まだまだ道半ばなのでお力を貸してください!!! https://hrmos.co/pages/timee/jobs/1682251404118319115 積極的に採用中です!!!