Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介:Learning Lexical Subspaces in a Distributi...
Search
Taichi Aida
September 16, 2021
Research
0
350
文献紹介:Learning Lexical Subspaces in a Distributional Vector Space
最先端NLP2021
Learning Lexical Subspaces in a Distributional Vector Space(TACL2020)
相田太一
都立大 小町研
Taichi Aida
September 16, 2021
Tweet
Share
More Decks by Taichi Aida
See All by Taichi Aida
意味を表すベクトル表現を用いたテキスト分析
a1da4
0
85
PhD Defence: Considering Temporal and Contextual Information for Lexical Semantic Change Detection
a1da4
1
250
文献紹介:A Multidimensional Framework for Evaluating Lexical Semantic Change with Social Science Applications
a1da4
1
360
YANS2024:目指せ国際会議!「ネットワーキングの極意(国際会議編)」
a1da4
0
280
言語処理学会30周年記念事業留学支援交流会@YANS2024:「学生のための短期留学」
a1da4
1
410
新入生向けチュートリアル:文献のサーベイv2
a1da4
16
11k
文献紹介:Isotropic Representation Can Improve Zero-Shot Cross-Lingual Transfer on Multilingual Language Models
a1da4
0
210
文献紹介:WhitenedCSE: Whitening-based Contrastive Learning of Sentence Embeddings
a1da4
1
340
文献紹介:On the Transformation of Latent Space in Fine-Tuned NLP Models
a1da4
0
120
Other Decks in Research
See All in Research
Can AI Generated Ambrotype Chain the Aura of Alternative Process? In SIGGRAPH Asia 2024 Art Papers
toremolo72
0
120
姫路市 -都市OSの「再実装」-
hopin
0
1.6k
学習型データ構造:機械学習を内包する新しいデータ構造の設計と解析
matsui_528
5
2.7k
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
370
Language Models Are Implicitly Continuous
eumesy
PRO
0
370
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
300
データサイエンティストをめぐる環境の違い2025年版〈一般ビジネスパーソン調査の国際比較〉
datascientistsociety
PRO
0
530
製造業主導型経済からサービス経済化における中間層形成メカニズムのパラダイムシフト
yamotty
0
460
超高速データサイエンス
matsui_528
1
350
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
820
生成的情報検索時代におけるAI利用と認知バイアス
trycycle
PRO
0
200
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
850
Featured
See All Featured
WCS-LA-2024
lcolladotor
0
420
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
200
Leo the Paperboy
mayatellez
3
1.3k
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
100
We Have a Design System, Now What?
morganepeng
54
8k
Music & Morning Musume
bryan
46
7k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
420
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
42
Raft: Consensus for Rubyists
vanstee
141
7.3k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
280
Transcript
Learning Lexical Subspaces in a Distributional Vector Space Kushal Arora,
Aishik Chakraborty, Jackie C. K. Cheung TACL2020 相田太一 東京都立大学 小町研究室 最先端NLP
概要 - 単語の語彙・意味的な関係(類義語、上位語な ど)を単語ベクトル空間から変換した subspace で表現 - 元のベクトル空間の情報を保持したまま内在・外 因的評価で既存の手法を上回る 2
導入 - 問題点:分布仮説は対義語を扱えない →制約を加えて単語ベクトルを修正する研究 ✅ 指定した意味的関係を扱えるようになる ❌ 元のベクトルが持つ情報が失われる (→下流タスクでの性能低下) ❌
複数の関係を扱うのが困難 (対義語:対称, 上位概念:非対称) 3
提案手法:LexSub - 解決方法:扱う情報ごとに空間を分ける - 分布の情報:元のベクトル空間 - 各意味的関係(対義語, 上位語, 部分):元のベクトル空間 から線形変換した
subspace 4
- 学習: - 変換行列 W を使い、各 subspace に変換 - 各関係を持つ単語セット
R で学習 - 類義語:単語ペアを近づける - 対義語:単語ペアを離す negative sampling 提案手法:各意味関係の subspace を学習 5 cos 距離 同じ subspace なので、同 じ変換行列 W syn を使う
- 上位語:非対称(✅ 🍎→果物, ❌ 果物→🍎) - 部分関係:非対称(✅ 🍁→🌲, ❌ 🌲→🍁)
negative sampling 片方 i は j に近づける (類義語 L syn ) 他方 j は i から離す (対義語 L ant ) 提案手法:各意味関係の subspace を学習 6
- 最終的な損失関数 各 subspace の 損失関数 提案手法:各意味関係の subspace を学習 7
事前訓練済み単語ベクトル行列 X と学 習過程の単語ベクトル行列 X’ の 二乗ノルム
実験:設定 - 内在的評価・外因的評価を行った - 内在的評価: - 類似度タスク(men3k, WS-353R) - 類義語・対義語(Simlex,
Simverb) - 上位語・下位語(Hyperlex, WBLESS, BIBLESS, BLESS, LEDS, EVAL, WEEDS) - 外因的評価:AllenNLP toolkit での入力層の埋め込みを 置き換える - 固有名詞抽出(NER) - 感情分類(SST) - 含意関係(SNLI) - 質問応答(SQuAD) - 言い換え検出(QQP) 8
実験:比較手法 - ベースライン:元のベクトルを直接調整 - Vanilla:GloVe - Wikipedia, Gigaword で事前訓練済み -
Retrofitting:近い単語を近づける訓練 - Counterfitting:Retrofitting + 対義語 - LEAR:上位語・下位語に対応 - 提案手法と共に以下の単語セットで調整 9
結果:内在的評価(類似度) - LexSub は元のベクトル空間を使用 - subspace を学習しつつ、訓練時の情報を保持 10
結果:内在的評価(類似度) - LexSub は元のベクトル空間を使用 - subspace を学習しつつ、訓練時の情報を保持 11 Counterfitting は対義語、LEAR
は上位語に対応した制約を加えて いるのが悪影響だった?
結果:内在的評価(上位語) - LexSub は上位語の subspace を使用 - 上位語特化の LEAR の性能を上回る
12
結果:外因的評価 微調整あり(Setup 1)、なし(Setup 2) - LexSub は元のベクトル空間を使用 - 多くのタスクでベースラインを上回る 13
結果:外因的評価 微調整あり(Setup 1)、なし(Setup 2) - 他の手法は Vanilla を下回る→ベクトル空間を分 けて意味関係を学習するのが効果的? 14
分析:3つの疑問について 1. LexSub の各 subspace は対応する意味関係を どの程度捉えているか? 2. LexSub の各
subspace は下流タスクにおける ニューラルなモデルで再現できるか? 3. LexSub の元の埋め込み空間は情報をどれだけ 保持しているか? 15
分析:各 subspace が 捉えている意味関係 - 各 query に対するそれぞれの周辺語 - それぞれの関係を捉えている?
16
分析:各 subspace が 捉えている意味関係 - Hyperlex, Simlex999 で 対義語、上位語、部分 関係を捉えるタスク
- LexSub の各 subspace がそれぞれ高性能 17
分析:各 subspace を 下流タスクのモデルで再現 - 類義語・対義語・上位語・部分関係を予測 - LexSub がベースラインを上回る→各subspace への線形変換をニューラルが再現?
18
分析:元々のベクトル空間 - 元のベクトルは情報を保持できているか? - Vanilla との二乗ノルム(=情報損失)を計算 - LexSub の損失はベースラインの 1/30
程度 →事前学習の情報を保持したまま各関係を学習 19
結論 - 単語の語彙・意味的な関係(類義語、上位語な ど)を単語ベクトル空間から変換した subspace で表現 - 元のベクトル空間の情報を保持したまま内在・外 因的評価で既存の手法を上回る 20