Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文読み会 / Deep Multi-Modal Sets
Search
chck
June 29, 2020
Research
0
17
論文読み会 / Deep Multi-Modal Sets
社内論文読み会、PaperFridayでの発表資料です
chck
June 29, 2020
Tweet
Share
More Decks by chck
See All by chck
CyberAgent AI Lab研修 / Container for Research
chck
0
2k
CyberAgent AI Lab研修 / Code Review in a Team
chck
2
1.9k
論文読み会 / Socio-Technical Anti-Patterns in Building ML-Enabled Software: Insights from Leaders on the Forefront
chck
0
53
CyberAgent AI事業本部MLOps研修Container編 / Container for MLOps
chck
2
5.7k
論文読み会 / GLAZE: Protecting Artists from Style Mimicry by Text-to-Image Models
chck
0
39
論文読み会 / On the Factory Floor: ML Engineering for Industrial-Scale Ads Recommendation Models
chck
0
22
論文読み会 / GUIGAN: Learning to Generate GUI Designs Using Generative Adversarial Networks
chck
0
29
機械学習開発のためのコンテナ入門 / Container for ML
chck
0
940
Web系企業研究所における研究開発を加速させるエコシステム / Ecosystem accelerates our R&D in CyberAgent AI Lab
chck
0
150
Other Decks in Research
See All in Research
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
300
EarthDial: Turning Multi-sensory Earth Observations to Interactive Dialogues
satai
3
340
なめらかなシステムと運用維持の終わらぬ未来 / dicomo2025_coherently_fittable_system
monochromegane
0
5k
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
440
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
200
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
360
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
960
論文紹介:Safety Alignment Should be Made More Than Just a Few Tokens Deep
kazutoshishinoda
0
120
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
150
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
950
ドメイン知識がない領域での自然言語処理の始め方
hargon24
1
160
SegEarth-OV: Towards Training-Free Open-Vocabulary Segmentation for Remote Sensing Images
satai
3
410
Featured
See All Featured
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
Docker and Python
trallard
46
3.7k
4 Signs Your Business is Dying
shpigford
186
22k
Done Done
chrislema
186
16k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
680
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
54k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
980
Code Review Best Practice
trishagee
72
19k
Designing Experiences People Love
moore
142
24k
Transcript
Deep Multi-Modal Sets 20/06/29 PaperFriday, Yuki Iwazaki@AI Lab
2 Point: 特徴のDown SamplingやScalabilityを考慮した Multi-Modal Encoderを提案 Authors: Austin Reiter, Menglin
Jia, Pu Yang, Ser-Nam Lim - Facebook AI Research, Cornell University 選定理由: - Creative Researchのslackでちょっと話題に出た - 俺より強いマルチモーダル表現に会いに行く
The Multi-Modal Problem 3
Multi-Modal Task? 複数の特徴タイプをモデル内で結合するタスク 4
non_linear_layers score 5 SimpleなMulti-Modal Model XC = concat([X1, . .
. XI ]) -> MLP -> Score
non_linear_layers score 6 問題点1: 特定Modal特徴がないことを zero paddingで表すのは不自然 0. 0. 0.
non_linear_layers score 7 問題点2: 特定Modal特徴の複数発生に 対応できていない 最大発生数で表現するのは無駄
non_linear_layers score 8 問題点3: 特徴次元に不均衡があると 高次元なModalityが Vectorを支配してしまう 10 × 12
178 × 100 200 × 200 × 3
non_linear_layers score 9 問題点3: 特に特徴次元に不均衡があると 高次元なModalityが Vectorを支配してしまう 10 × 12
178 × 100 200 × 200 × 3 ModalityのCardinalityに応じてScaleしながら 共通の次元に Encodeするモデルを提案
Pooling Layer 10
Pooling Layer: CNNの構成要素の 1つ 行列の小領域毎にMax, Avg, Sum, Min等をかけ情報を圧縮
Deep Sets 12
Deep Sets [Zaheer, 17] CNN(Pooling)の位置不変性を利用して Scalableな埋め込み表現を学習するモデル CNNでいう画像サイズが変わろうが、GCNでいうユー ザに対するアイテムの順番が変わろうが、 各要素、特徴自体の位置はPoolingのおかげで 大きく変わらない
15 Graph Convolutional Network
Proposed Method 16
Deep Multi-Modal Sets 17
Feature Importance可視化のために Poolingを通じてModality毎に 圧縮された特徴を得る Maxならそのmodalityにおける 特徴の最大値、Sumなら 合計値 18 特にMax Poolingの場合
Max要素を逆算(argmax)してModalityレベルで 解釈しやすい特徴重要度が得られる -> Pooling後の中間特徴として生き残った特徴 -> 予測結果に影響を与えている
Experiments 19
Datasets: Ads-Parallelity Dataset 広告画像 + 説明文-> 関係性 Parallelity: ImageとTextが一貫して同じメッセージ性を持つか (どちらかがなくても伝わるか)
20
Datasets: MultiModal-IMDb 映画のジャケ画像 + 説明文 -> 映画のジャンル 21
Features 22
Implementation non linear layers Modality wise pooling WSL Face OCR
RoBERTa Index Embedding +Meta
Results: Ads-Parallelity 28
None
Results: MM-IMDb 30
None
Conclusion 37
Conclusion and Future Work ◂ DynamicなModalityをうまくモデリングできる Multi-Modal Architectureを提案 ◂ PoolingがDown
Samplingのように働く ◂ Max-Poolingを用いた重要度の可視化 ◂ エラー分析が容易に ◂ Videoへの拡張が今後の課題 38
Comment - Pooling自体はシンプルで直感的なので実装しやすい - 特徴抽出器まではfreezeなので計算コストも低そう - Pooling Encoderの出力次元Dがハイパラで肝 - Adsは32次元,
MM-IMDbは1024次元らしい - 説明文(RoBERTa)だけでそこそこ精度が出ている気がする - タスクによるが説明文があればOCRテキストはそこまで要らない? - OCR自体の検出性能が絡んでいそう 39
References - Permutation-equivariant neural networks applied to dynamics prediction -
Graph Neural Networks and Permutation invariance - Connections between Neural Networks and Pure Mathematics - Deep Sets 40
41 Thanks! Any questions? You can find me at ◂
@chck ◂ #times_chck ◂
[email protected]
Feedback - 特徴抽出器もコミコミのe2e? - GPUも1枚なのでおそらく抽出後が入力 - それはそれで実装が重いですね - pooling type結局どれがいいのか
- 精度大差ないのでFeature Importanceとの兼ね合いで Maxでいいのでは