Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文読み会 / Deep Multi-Modal Sets
Search
chck
June 29, 2020
Research
0
3
論文読み会 / Deep Multi-Modal Sets
社内論文読み会、PaperFridayでの発表資料です
chck
June 29, 2020
Tweet
Share
More Decks by chck
See All by chck
論文読み会 / Socio-Technical Anti-Patterns in Building ML-Enabled Software: Insights from Leaders on the Forefront
chck
0
20
CyberAgent AI事業本部MLOps研修Container編 / Container for MLOps
chck
2
5.2k
論文読み会 / GLAZE: Protecting Artists from Style Mimicry by Text-to-Image Models
chck
0
6
論文読み会 / On the Factory Floor: ML Engineering for Industrial-Scale Ads Recommendation Models
chck
0
2
論文読み会 / GUIGAN: Learning to Generate GUI Designs Using Generative Adversarial Networks
chck
0
5
機械学習開発のためのコンテナ入門 / Container for ML
chck
0
860
Web系企業研究所における研究開発を加速させるエコシステム / Ecosystem accelerates our R&D in CyberAgent AI Lab
chck
0
130
論文読み会 / Counterfactual VQA: A Cause-Effect Look at Language Bias
chck
0
3
CyberAgent AI Labを支えるCloud実験環境 / ML Experiment Management via Cloud Computing Platform in CyberAgent AI Lab
chck
7
4.1k
Other Decks in Research
See All in Research
ドローンやICTを活用した持続可能なまちづくりに関する研究
nro2daisuke
0
140
Leveraging LLMs for Unsupervised Dense Retriever Ranking (SIGIR 2024)
kampersanda
2
300
国際会議ACL2024参加報告
chemical_tree
1
430
新規のC言語処理系を実装することによる 組込みシステム研究にもたらす価値 についての考察
zacky1972
1
320
Bluesky Game Dev
trezy
0
140
Weekly AI Agents News! 12月号 プロダクト/ニュースのアーカイブ
masatoto
0
320
AIトップカンファレンスからみるData-Centric AIの研究動向 / Research Trends in Data-Centric AI: Insights from Top AI Conferences
tsurubee
3
1.5k
メタヒューリスティクスに基づく汎用線形整数計画ソルバーの開発
snowberryfield
3
760
Zipf 白色化:タイプとトークンの区別がもたらす良質な埋め込み空間と損失関数
eumesy
PRO
8
1.3k
ECCV2024読み会: Minimalist Vision with Freeform Pixels
hsmtta
1
410
論文紹介: COSMO: A Large-Scale E-commerce Common Sense Knowledge Generation and Serving System at Amazon (SIGMOD 2024)
ynakano
1
380
Satellite Sunroof: High-res Digital Surface Models and Roof Segmentation for Global Solar Mapping
satai
2
130
Featured
See All Featured
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
4
410
Writing Fast Ruby
sferik
628
61k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
33
2.8k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
What's in a price? How to price your products and services
michaelherold
244
12k
Building Your Own Lightsaber
phodgson
104
6.2k
Statistics for Hackers
jakevdp
797
220k
Into the Great Unknown - MozCon
thekraken
35
1.6k
Embracing the Ebb and Flow
colly
84
4.6k
Why Our Code Smells
bkeepers
PRO
336
57k
Agile that works and the tools we love
rasmusluckow
328
21k
Transcript
Deep Multi-Modal Sets 20/06/29 PaperFriday, Yuki Iwazaki@AI Lab
2 Point: 特徴のDown SamplingやScalabilityを考慮した Multi-Modal Encoderを提案 Authors: Austin Reiter, Menglin
Jia, Pu Yang, Ser-Nam Lim - Facebook AI Research, Cornell University 選定理由: - Creative Researchのslackでちょっと話題に出た - 俺より強いマルチモーダル表現に会いに行く
The Multi-Modal Problem 3
Multi-Modal Task? 複数の特徴タイプをモデル内で結合するタスク 4
non_linear_layers score 5 SimpleなMulti-Modal Model XC = concat([X1, . .
. XI ]) -> MLP -> Score
non_linear_layers score 6 問題点1: 特定Modal特徴がないことを zero paddingで表すのは不自然 0. 0. 0.
non_linear_layers score 7 問題点2: 特定Modal特徴の複数発生に 対応できていない 最大発生数で表現するのは無駄
non_linear_layers score 8 問題点3: 特徴次元に不均衡があると 高次元なModalityが Vectorを支配してしまう 10 × 12
178 × 100 200 × 200 × 3
non_linear_layers score 9 問題点3: 特に特徴次元に不均衡があると 高次元なModalityが Vectorを支配してしまう 10 × 12
178 × 100 200 × 200 × 3 ModalityのCardinalityに応じてScaleしながら 共通の次元に Encodeするモデルを提案
Pooling Layer 10
Pooling Layer: CNNの構成要素の 1つ 行列の小領域毎にMax, Avg, Sum, Min等をかけ情報を圧縮
Deep Sets 12
Deep Sets [Zaheer, 17] CNN(Pooling)の位置不変性を利用して Scalableな埋め込み表現を学習するモデル CNNでいう画像サイズが変わろうが、GCNでいうユー ザに対するアイテムの順番が変わろうが、 各要素、特徴自体の位置はPoolingのおかげで 大きく変わらない
15 Graph Convolutional Network
Proposed Method 16
Deep Multi-Modal Sets 17
Feature Importance可視化のために Poolingを通じてModality毎に 圧縮された特徴を得る Maxならそのmodalityにおける 特徴の最大値、Sumなら 合計値 18 特にMax Poolingの場合
Max要素を逆算(argmax)してModalityレベルで 解釈しやすい特徴重要度が得られる -> Pooling後の中間特徴として生き残った特徴 -> 予測結果に影響を与えている
Experiments 19
Datasets: Ads-Parallelity Dataset 広告画像 + 説明文-> 関係性 Parallelity: ImageとTextが一貫して同じメッセージ性を持つか (どちらかがなくても伝わるか)
20
Datasets: MultiModal-IMDb 映画のジャケ画像 + 説明文 -> 映画のジャンル 21
Features 22
Implementation non linear layers Modality wise pooling WSL Face OCR
RoBERTa Index Embedding +Meta
Results: Ads-Parallelity 28
None
Results: MM-IMDb 30
None
Conclusion 37
Conclusion and Future Work ◂ DynamicなModalityをうまくモデリングできる Multi-Modal Architectureを提案 ◂ PoolingがDown
Samplingのように働く ◂ Max-Poolingを用いた重要度の可視化 ◂ エラー分析が容易に ◂ Videoへの拡張が今後の課題 38
Comment - Pooling自体はシンプルで直感的なので実装しやすい - 特徴抽出器まではfreezeなので計算コストも低そう - Pooling Encoderの出力次元Dがハイパラで肝 - Adsは32次元,
MM-IMDbは1024次元らしい - 説明文(RoBERTa)だけでそこそこ精度が出ている気がする - タスクによるが説明文があればOCRテキストはそこまで要らない? - OCR自体の検出性能が絡んでいそう 39
References - Permutation-equivariant neural networks applied to dynamics prediction -
Graph Neural Networks and Permutation invariance - Connections between Neural Networks and Pure Mathematics - Deep Sets 40
41 Thanks! Any questions? You can find me at ◂
@chck ◂ #times_chck ◂
[email protected]
Feedback - 特徴抽出器もコミコミのe2e? - GPUも1枚なのでおそらく抽出後が入力 - それはそれで実装が重いですね - pooling type結局どれがいいのか
- 精度大差ないのでFeature Importanceとの兼ね合いで Maxでいいのでは