Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DWH御三家の各特徴と選び方〜SnowflakeとBigQueryとRedshiftと〜
Search
tama-chang
December 02, 2020
Technology
0
9.6k
DWH御三家の各特徴と選び方〜SnowflakeとBigQueryとRedshiftと〜
https://forkwell.connpass.com/event/194269/
tama-chang
December 02, 2020
Tweet
Share
More Decks by tama-chang
See All by tama-chang
データ分析の世界で今後必要とされる役割 「Purple People」とは
cmtamai
3
2.8k
Transform〜メトリクスレイヤーとは何か? データ分析に必要な「指標」を管理する
cmtamai
0
2.1k
アナリティクスエンジニアとは(What is Analytics Engineer)
cmtamai
1
8.8k
禁忌解放~TableauとLookerを連携して究極のBI環境を召喚する
cmtamai
0
3.3k
Lookerはじめの一歩
cmtamai
0
2.2k
Snowflakeはじめの一歩
cmtamai
2
2.5k
スティーブン・セガール出演作品の邦題に「沈黙」がつくかどうか判別する機械学習モデルを作ろうとしてみた
cmtamai
0
880
osaka_tamai.pdf
cmtamai
0
1.8k
スティーブン・セガール出演作品の邦題に「沈黙」がつくかどうか判別する機械学習モデルを作ろうとしてみた
cmtamai
0
1.4k
Other Decks in Technology
See All in Technology
PHPerのための計算量入門/Complexity101 for PHPer
hanhan1978
5
200
社外コミュニティで学び社内に活かす共に学ぶプロジェクトの実践/backlogworld2024
nishiuma
0
270
社内イベント管理システムを1週間でAKSからACAに移行した話し
shingo_kawahara
0
190
ガバメントクラウドのセキュリティ対策事例について
fujisawaryohei
0
560
日本版とグローバル版のモバイルアプリ統合の開発の裏側と今後の展望
miichan
1
130
[Ruby] Develop a Morse Code Learning Gem & Beep from Strings
oguressive
1
170
KubeCon NA 2024 Recap / Running WebAssembly (Wasm) Workloads Side-by-Side with Container Workloads
z63d
1
250
生成AIをより賢く エンジニアのための RAG入門 - Oracle AI Jam Session #20
kutsushitaneko
4
260
AWS re:Invent 2024で発表された コードを書く開発者向け機能について
maruto
0
200
株式会社ログラス − エンジニア向け会社説明資料 / Loglass Comapany Deck for Engineer
loglass2019
3
32k
Wantedly での Datadog 活用事例
bgpat
1
520
継続的にアウトカムを生み出し ビジネスにつなげる、 戦略と運営に対するタイミーのQUEST(探求)
zigorou
0
600
Featured
See All Featured
KATA
mclloyd
29
14k
Mobile First: as difficult as doing things right
swwweet
222
9k
Rails Girls Zürich Keynote
gr2m
94
13k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
YesSQL, Process and Tooling at Scale
rocio
169
14k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Navigating Team Friction
lara
183
15k
Writing Fast Ruby
sferik
628
61k
Product Roadmaps are Hard
iamctodd
PRO
49
11k
Designing for Performance
lara
604
68k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
32
2.7k
Visualization
eitanlees
146
15k
Transcript
DWH御三家の各特徴と選び方 〜SnowflakeとBigQueryとRedshiftと〜 玉井 励 クラスメソッド株式会社 データアナリティクス事業本部 1
2 自己紹介 玉井 励(タマイ レイ) • クラスメソッド株式会社 ◦ Snowflakeの国内初ソリューションパート ナー
• 自分の職種 ◦ BIツールの技術支援など ◦ BIとDWHは切っても切り離せない関係 • 奈良県出身、奈良県在住
3 今回お話すること(アジェンダ)
4 今回お話すること • DWHの簡単なおさらい(DWHとは?) • DWHの選び方における結論 • DWH御三家の特徴を簡単にご紹介 ◦ Snowflake
◦ Google BigQuery ◦ Amazon Redshift • DWH御三家の選び方
5 データウェアハウス(DWH)とは?
6 データウェアハウスとは 分析しやすいようにデータを蓄積するDB
7 DWHをもっと知りたい方は https://youtu.be/G7weKwUE6KY
8 DWHの選び方における結論
9 世の中そんなに甘くない 「これを選んでおけば間違いない」 というDWHはありません
10 結局はこれ 自分たちの(データ分析における)要件に 合ったDWHが一番良い
11 いちばんだいじなこと 自分たちが計画している データ分析の要件を徹底的に洗い出す
12 DWH御三家の紹介
13 Snowflake • Snowflake社が提供する サービス • フルマネージド • 従量課金 ◦
メインは仮想ウェアハウス の稼働時間
14 Snowflakeのいいところ • 面倒な管理不要 ◦ コンピュート部分は管理可能 • 最先端の機能が多数存 在 ◦
仮想ウェアハウス ◦ ステージ ◦ ゼロコピークローン ◦ タイムトラベル ◦ snowpipe ◦ 半構造化データの取り扱い ◦ データシェアリング
15 Snowflakeの注意点 • 主要なパブリッククラウド サービスと独立してしまう ◦ 料金支払等がバラける ◦ 各種連携は可能 •
事前の見積は難しい
16 Google BigQuery • GCPサービスの1つ • フルマネージド • 従量課金 ◦
メインは処理するデータ 量(スキャン量)
17 Google BigQueryのいいところ • 管理不要 • GCPやGoogleサービスと の連携 • SQLだけで機械学習
(BQML)
18 Google BigQueryの注意点 • コストマネジメントに一定 のスキルが必要 ◦ パーティショニングなど • BQ独自のデータの扱い
方がある ◦ STRUCT型、UNNEST • 事前の見積は難しい
19 Amazon Redshift • AWSのサービスの1つ • マネージドサービス • 従量課金 ◦
起動している時間
20 Amazon Redshiftのいいところ • とっつきやすい ◦ 従来のDBと似た感覚で使 える ◦ オンプレDWHの知見を流
用できる • 事前の見積がしやすい • AWSである ◦ 既存AWSサービスとの連 携
21 Amazon Redshiftの注意点 • それなりに管理は必要 ◦ スケーラビリティ ◦ WLM ◦
VACUUM • それなりにチューニング は必要 ◦ 列圧縮タイプ ◦ 分散スタイル ◦ 各種キー
22 DWHの選び方
23 切り口は人それぞれ どういう観点で選ぶか
24 DWHを選ぶ観点の例 • パフォーマンス • セキュリティ • バックアップ(&リカバリー) • スケーラビリティ
• エコシステム • コスト
25 DWHを選ぶ観点の例 • パフォーマンス • セキュリティ • バックアップ(&リカバリー) • スケーラビリティ
• エコシステム • コスト
26 ぶっちゃけ パフォーマンスはどれも同じ (環境や状況による)
27 ベンチマーク記事は冷静に https://aws.amazon.com/jp/blogs/big-data/fact-or-fiction-google-big-query-outperforms-amazon-redshift-as-an-enterprise-data-warehouse/
28 DWHを選ぶ観点の例 • パフォーマンス • セキュリティ • バックアップ(&リカバリー) • スケーラビリティ
• エコシステム • コスト
29 セキュリティもバックアップも どのDWHもしっかりしてる
30 サービスとしてのセキュリティ https://www.snowflake.com/%E8%A3%BD%E5%93%81/snowflake%E3%82%BB%E3%82%AD%E3%83%A5%E3%83%AA%E3%83%86%E3%82%A3%E3%81%A8% E3%83%88%E3%83%A9%E3%82%B9%E3%83%88%E3%82%BB%E3%83%B3%E3%82%BF%E3%83%BC/?lang=ja https://cloud.google.com/data-security-governance?hl=JA https://docs.aws.amazon.com/ja_jp/redshift/latest/mgmt/iam-redshift-user-mgmt.html
31 機能としてのセキュリティ • アクセス制御 ◦ IP縛りとか • 認証 • 権限管理
• 暗号化
32 バックアップについて • タイムトラベル • Fail-safe • 各種ステージへの UNLOAD •
7日間の自動履歴保存 • Cloud Storageへのエク スポート • 自動スナップショット • 手動スナップショット • S3へのUNLOAD
33 DWHを選ぶ観点の例 • パフォーマンス • セキュリティ • バックアップ(&リカバリー) • スケーラビリティ
• エコシステム • コスト
34 データが加速度的に増えていく時代 https://iotnews.jp/archives/150335
35 自分で管理 vs サービスにおまかせ https://fivetran.com/blog/warehouse-benchmark
36 BigQueryが楽そうだが…? • 仮想ウェアハウスのサイ ズ変更 • 自動 • インスタンスタイプの変 更
• ノード数の変更 • Spectrum • RA3
37 DWHを選ぶ観点の例 • パフォーマンス • セキュリティ • バックアップ(&リカバリー) • スケーラビリティ
• エコシステム • コスト
38 基盤を1つのエコシステムで統一するメリット
39 DWHを選ぶ観点の例 • パフォーマンス • セキュリティ • バックアップ(&リカバリー) • スケーラビリティ
• エコシステム • コスト
40 まずはSnowflakeとBigQueryの2つで考えてみる • 仮想ウェアハウスが起動し ていた時間(秒単位) • クエリで処理するデータの 量(スキャン量)
41 Snowflakeのコストマネジメント • 仮想ウェアハウスの扱い がコストの鍵を握る • ワークロード別に用意し て調整 ◦ サイズ
◦ 稼働時間 ◦ クラスタ数 ◦ オートサスペンド(&レ ジューム) • いつでも変更可
42 BigQueryのコストマネジメント • スキャンデータ量 ◦ LIMIT句は無意味 • 無駄なスキャンを避けるテクニックが必要 ◦ テーブル分割(パーティショニング)
◦ 無駄なクエリは実行しない(中身を見るだけ等) ◦ 必要なカラムのみ対象にする ◦ 実行前にクエリの見積をする(見積ツールあり) ◦ 処理可能サイズに制限をかける
43 考え方の例 • 仮想ウェアハウスが起動し ていた時間(秒単位) • 大量のデータを定期的に 処理し続ける要件がある 場合はSnowflakeの方が よい?
• クエリで処理するデータの 量(スキャン量) • 特定のタイミングだけ重い 処理が行われる(アイドル 状態も多い)要件がある場 合はBigQueryの方がよ い?
44 Redshiftという選択肢 • 立ち上がっている時間=コ スト ◦ クエリの処理量や処理時 間を気にしなくて良い ◦ 見積がしやすい
◦ リザーブドインスタンス
45 まとめ
46 まとめ • DWHとは、データ分析に特化したDB • 一番いいDWH = 自分の要件に合ったDWH • 実際に使ってみるのが一番の近道(トライアル、無料枠)
47