Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
トピックモデルで1週間の献立をレコメンドする
Search
funain
March 02, 2019
Technology
0
4.8k
トピックモデルで1週間の献立をレコメンドする
コード付き解説ドキュメントの記事もアップしておきました。
http://moratoriamuo.hatenablog.com/entry/2019/03/05/004229
funain
March 02, 2019
Tweet
Share
More Decks by funain
See All by funain
第3回 クイズ大会 問題
funain
0
64
第3回 クイズ大会 解答
funain
0
57
第2回 クイズ大会 問題
funain
0
120
第2回 クイズ大会 解答
funain
0
100
2023年度にやりたいこと(めぐろLT会 #2)
funain
0
500
スクリーニング評価の注意点
funain
0
680
第1回 クイズ大会 問題
funain
0
720
第1回 クイズ大会 解答
funain
0
220
フェアな比較を崩すもの ~交絡と効果修飾~ / Confounding EffectModification
funain
1
480
Other Decks in Technology
See All in Technology
バクラクのドキュメント解析技術と実データにおける課題 / layerx-ccc-winter-2024
shimacos
2
1.1k
事業貢献を考えるための技術改善の目標設計と改善実績 / Targeted design of technical improvements to consider business contribution and improvement performance
oomatomo
0
100
Fanstaの1年を大解剖! 一人SREはどこまでできるのか!?
syossan27
2
170
UI State設計とテスト方針
rmakiyama
2
620
Opcodeを読んでいたら何故かphp-srcを読んでいた話
murashotaro
0
270
多領域インシデントマネジメントへの挑戦:ハードウェアとソフトウェアの融合が生む課題/Challenge to multidisciplinary incident management: Issues created by the fusion of hardware and software
bitkey
PRO
2
110
re:Invent をおうちで楽しんでみた ~CloudWatch のオブザーバビリティ機能がスゴい!/ Enjoyed AWS re:Invent from Home and CloudWatch Observability Feature is Amazing!
yuj1osm
0
130
生成AIのガバナンスの全体像と現実解
fnifni
1
190
社内イベント管理システムを1週間でAKSからACAに移行した話し
shingo_kawahara
0
190
権威ドキュメントで振り返る2024 #年忘れセキュリティ2024
hirotomotaguchi
2
750
10分で学ぶKubernetesコンテナセキュリティ/10min-k8s-container-sec
mochizuki875
3
350
サービスでLLMを採用したばっかりに振り回され続けたこの一年のあれやこれや
segavvy
2
490
Featured
See All Featured
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Speed Design
sergeychernyshev
25
670
Gamification - CAS2011
davidbonilla
80
5.1k
Build The Right Thing And Hit Your Dates
maggiecrowley
33
2.4k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
26
1.5k
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.6k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
191
16k
Unsuck your backbone
ammeep
669
57k
How to train your dragon (web standard)
notwaldorf
88
5.7k
The Cult of Friendly URLs
andyhume
78
6.1k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Transcript
トピックモデル ~ 1週間の献立を考える ~ Tokyo.R #76 LT 2019/03/02 1
自己紹介 2 • 名前 : もらとりあむお • Twitter : @moratoriamuo271
• 趣味 : ・飲酒 (ビールと日本酒) ・ 横浜DeNAベイスターズ ・バドミントン, カラオケ, ボードゲーム • 所属 : 4月から渋谷で働きます…
モチベーション 料理において、献立の決定は面倒くさい!! (プログラミングで名前付けが大変なように?) ↓ レコメンドエンジンを作ってしまおう!! • 同じものばかりオススメされても飽きるし、栄養も偏る • レシピをクラスタリングして、クラスタ別でオススメする 3
レコメンドエンジンの作り方 レシピデータの収集 {rvest}と{stringr} ワードクラウドで可視化 {wordcloud} 文書ターム行列の作成 {RMeCab}と{tm} LDAモデルの適用とトピック数の決定 {topicmodels}と{ldatuning} トピックによるレシピの分類とレコメンド
{tidytext}と自作関数 4
レシピデータの収集 5 クックパッドの「今日のご飯・おかず」カテゴリから500件収集
ワードクラウドで可視化 6
トピックモデルの説明 •文書が生成される過程をモデル化した確率モデル トピックごとに単語を生成する確率分布があり、単語の集合 である文書はそれぞれトピック(トピック分布)を持ち、それ らによって文書が生成されていくモデル • ユニグラムモデル → 混合ユニグラムモデル →
LDA と拡張 • 文書だけでなく、画像や購買履歴、ネットワークのデータ にも応用可能。 7
ユニグラムモデル 0 0.1 0.2 0.3 0.4 トピック : R データ
分析 前処理 パイプ 宇宙 8 <文書1> データの分析を する工程の9割 は前処理だ。汚 いデータ… <文書3> データ分析、そ れは宇宙。神。 … <文書2> パイプ演算子は 分析の工程を見 やすくする。パ イプはいいぞ…
混合ユニグラムモデル 0 0.1 0.2 0.3 0.4 0.5 トピック : スポーツ
野球 サッカー 選手 栄養 9 0 0.1 0.2 0.3 0.4 トピック : R データ 分析 前処理 パイプ 宇宙 0 0.1 0.2 0.3 0.4 0.5 トピック : 料理 切る 焼く 弱火 卵 <文書1> データの分析を する工程の9割 は前処理だ。汚 いデータ… <文書2> プロ野球の開幕 に向けて若手選 手がキャンプの … <文書3> ジャガイモを細 かく切って、カ リッとなるよう 焼きます… 0 0.1 0.2 0.3 0.4 0.5 0.6 トピック分布 R スポーツ 料理
LDA(Latent Dirichlet Allocation) 0 0.1 0.2 0.3 0.4 0.5 野球
サッカー 選手 栄養 10 0 0.1 0.2 0.3 0.4 データ 分析 前処理 パイプ 宇宙 0 0.1 0.2 0.3 0.4 0.5 切る 焼く 弱火 卵 <文書1> 過去のデータを 用いて、野球に おけるバントの 効果を分析… <文書2> スポーツ選手が アスリートとし ての身体を維持 するために卵料 理… 0 0.2 0.4 0.6 0.8 文書1のトピック分布 R スポーツ 料理 0 0.2 0.4 0.6 0.8 文書2のトピック分布 R スポーツ 料理
トピック数の決定方法 • パープレキシティ(perplexity)で評価 負の対数尤度から計算される値。testデータを使用。低い方が良いモデル。 • {ldatuning}パッケージを使用 4つの論文で提案された指標でモデルを評価。 • 変分下限でモデル評価 変分ベイズ法を用いて推定をしている場合。
• ディリクレ過程でトピック数もモデル化 階層ディリクレ過程を用いるとトピック数の推定が可能。 11
ldatuningとperplexity 12
分類と解釈をしてみる • Topic 3 グラタン, シチュー, スープ • Topic 8
唐揚げなど鶏肉料理 • Topic 15 サラダ • Topic 18 野菜炒め 13
レコメンドエンジンの完成 14
参考文献 • 岩田『トピックモデル』 • 佐藤『トピックモデルによる統計的潜在意味解析』 • 松浦『StanとRでベイズ統計モデリング』 • 小林『Rによるやさしいテキストマイニング[機械学習編]』 •
『Select number of topics for LDA model』 https://cran.r-project.org/web/packages/ldatuning/vignettes/topics.html • 『蒙古タンメン中本コーパスに対してのLDAの適用とトピック数の探索』 http://kamonohashiperry.com/archives/1619 • 『[R] トピックモデル(LDA)を用いた大量文書の教師なし分類』 https://qiita.com/YM_DSKR/items/017a5dddeb56fcdf1054 15
ENJOY!! 16