Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
トピックモデルで1週間の献立をレコメンドする
Search
funain
March 02, 2019
Technology
0
5.9k
トピックモデルで1週間の献立をレコメンドする
コード付き解説ドキュメントの記事もアップしておきました。
http://moratoriamuo.hatenablog.com/entry/2019/03/05/004229
funain
March 02, 2019
Tweet
Share
More Decks by funain
See All by funain
第3回 クイズ大会 問題
funain
0
100
第3回 クイズ大会 解答
funain
0
100
第2回 クイズ大会 問題
funain
0
170
第2回 クイズ大会 解答
funain
0
140
2023年度にやりたいこと(めぐろLT会 #2)
funain
0
560
スクリーニング評価の注意点
funain
0
800
第1回 クイズ大会 問題
funain
0
1.6k
第1回 クイズ大会 解答
funain
0
280
フェアな比較を崩すもの ~交絡と効果修飾~ / Confounding EffectModification
funain
1
580
Other Decks in Technology
See All in Technology
LLMアプリケーション開発におけるセキュリティリスクと対策 / LLM Application Security
flatt_security
7
1.9k
いま注目しているデータエンジニアリングの論点
ikkimiyazaki
0
600
OpenAI gpt-oss ファインチューニング入門
kmotohas
2
1k
BtoBプロダクト開発の深層
16bitidol
0
350
Pure Goで体験するWasmの未来
askua
1
180
組織観点からIAM Identity CenterとIAMの設計を考える
nrinetcom
PRO
1
180
スタートアップにおけるこれからの「データ整備」
shomaekawa
0
160
SOC2取得の全体像
shonansurvivors
1
400
KMP の Swift export
kokihirokawa
0
330
社内報はAIにやらせよう / Let AI handle the company newsletter
saka2jp
4
300
E2Eテスト設計_自動化のリアル___Playwrightでの実践とMCPの試み__AIによるテスト観点作成_.pdf
findy_eventslides
1
420
Escaping_the_Kraken_-_October_2025.pdf
mdalmijn
0
140
Featured
See All Featured
RailsConf 2023
tenderlove
30
1.2k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
9
850
Embracing the Ebb and Flow
colly
88
4.8k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
610
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.6k
Navigating Team Friction
lara
189
15k
The Pragmatic Product Professional
lauravandoore
36
6.9k
A designer walks into a library…
pauljervisheath
209
24k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
54
3k
GraphQLとの向き合い方2022年版
quramy
49
14k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
Transcript
トピックモデル ~ 1週間の献立を考える ~ Tokyo.R #76 LT 2019/03/02 1
自己紹介 2 • 名前 : もらとりあむお • Twitter : @moratoriamuo271
• 趣味 : ・飲酒 (ビールと日本酒) ・ 横浜DeNAベイスターズ ・バドミントン, カラオケ, ボードゲーム • 所属 : 4月から渋谷で働きます…
モチベーション 料理において、献立の決定は面倒くさい!! (プログラミングで名前付けが大変なように?) ↓ レコメンドエンジンを作ってしまおう!! • 同じものばかりオススメされても飽きるし、栄養も偏る • レシピをクラスタリングして、クラスタ別でオススメする 3
レコメンドエンジンの作り方 レシピデータの収集 {rvest}と{stringr} ワードクラウドで可視化 {wordcloud} 文書ターム行列の作成 {RMeCab}と{tm} LDAモデルの適用とトピック数の決定 {topicmodels}と{ldatuning} トピックによるレシピの分類とレコメンド
{tidytext}と自作関数 4
レシピデータの収集 5 クックパッドの「今日のご飯・おかず」カテゴリから500件収集
ワードクラウドで可視化 6
トピックモデルの説明 •文書が生成される過程をモデル化した確率モデル トピックごとに単語を生成する確率分布があり、単語の集合 である文書はそれぞれトピック(トピック分布)を持ち、それ らによって文書が生成されていくモデル • ユニグラムモデル → 混合ユニグラムモデル →
LDA と拡張 • 文書だけでなく、画像や購買履歴、ネットワークのデータ にも応用可能。 7
ユニグラムモデル 0 0.1 0.2 0.3 0.4 トピック : R データ
分析 前処理 パイプ 宇宙 8 <文書1> データの分析を する工程の9割 は前処理だ。汚 いデータ… <文書3> データ分析、そ れは宇宙。神。 … <文書2> パイプ演算子は 分析の工程を見 やすくする。パ イプはいいぞ…
混合ユニグラムモデル 0 0.1 0.2 0.3 0.4 0.5 トピック : スポーツ
野球 サッカー 選手 栄養 9 0 0.1 0.2 0.3 0.4 トピック : R データ 分析 前処理 パイプ 宇宙 0 0.1 0.2 0.3 0.4 0.5 トピック : 料理 切る 焼く 弱火 卵 <文書1> データの分析を する工程の9割 は前処理だ。汚 いデータ… <文書2> プロ野球の開幕 に向けて若手選 手がキャンプの … <文書3> ジャガイモを細 かく切って、カ リッとなるよう 焼きます… 0 0.1 0.2 0.3 0.4 0.5 0.6 トピック分布 R スポーツ 料理
LDA(Latent Dirichlet Allocation) 0 0.1 0.2 0.3 0.4 0.5 野球
サッカー 選手 栄養 10 0 0.1 0.2 0.3 0.4 データ 分析 前処理 パイプ 宇宙 0 0.1 0.2 0.3 0.4 0.5 切る 焼く 弱火 卵 <文書1> 過去のデータを 用いて、野球に おけるバントの 効果を分析… <文書2> スポーツ選手が アスリートとし ての身体を維持 するために卵料 理… 0 0.2 0.4 0.6 0.8 文書1のトピック分布 R スポーツ 料理 0 0.2 0.4 0.6 0.8 文書2のトピック分布 R スポーツ 料理
トピック数の決定方法 • パープレキシティ(perplexity)で評価 負の対数尤度から計算される値。testデータを使用。低い方が良いモデル。 • {ldatuning}パッケージを使用 4つの論文で提案された指標でモデルを評価。 • 変分下限でモデル評価 変分ベイズ法を用いて推定をしている場合。
• ディリクレ過程でトピック数もモデル化 階層ディリクレ過程を用いるとトピック数の推定が可能。 11
ldatuningとperplexity 12
分類と解釈をしてみる • Topic 3 グラタン, シチュー, スープ • Topic 8
唐揚げなど鶏肉料理 • Topic 15 サラダ • Topic 18 野菜炒め 13
レコメンドエンジンの完成 14
参考文献 • 岩田『トピックモデル』 • 佐藤『トピックモデルによる統計的潜在意味解析』 • 松浦『StanとRでベイズ統計モデリング』 • 小林『Rによるやさしいテキストマイニング[機械学習編]』 •
『Select number of topics for LDA model』 https://cran.r-project.org/web/packages/ldatuning/vignettes/topics.html • 『蒙古タンメン中本コーパスに対してのLDAの適用とトピック数の探索』 http://kamonohashiperry.com/archives/1619 • 『[R] トピックモデル(LDA)を用いた大量文書の教師なし分類』 https://qiita.com/YM_DSKR/items/017a5dddeb56fcdf1054 15
ENJOY!! 16