Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
スマートフォン向けインターネット広告配信システムの配信最適化
Search
Takashi Nishibayashi
July 11, 2017
Business
3
1.9k
スマートフォン向けインターネット広告配信システムの配信最適化
DATUM STUDIO Conference 2017夏での講演資料です
非エンジニア向けの内容です
Takashi Nishibayashi
July 11, 2017
Tweet
Share
More Decks by Takashi Nishibayashi
See All by Takashi Nishibayashi
診断前の病歴テキストを対象としたLLMによるエンティティリンキング精度検証
hagino3000
0
25
論文紹介 Improving Medical Reasoning through Retrieval and Self-Reflection with Retrieval-Augmented Large Language Models
hagino3000
0
810
論文紹介 Audience Size Forecasting Fast and Smart Budget Planning for Media Buyers
hagino3000
0
230
論文紹介 Towards a Fair Marketplace: Counterfactual Evaluation of the trade-off between Relevance, Fairness & Satisfaction in Recommendation Systems
hagino3000
1
620
論文紹介 Budget Management Strategies in Repeated Auctions (公開版)
hagino3000
1
280
論文紹介 A Request-level Guaranteed Delivery Advertising Planning: Forecasting and Allocation
hagino3000
0
110
論文紹介 Online Experimentation with Surrogate Metrics Guidelines and a Case Study
hagino3000
0
300
論文紹介 Bidding Machine: Learning to Bid for Directly Optimizing Profits in Display Advertising
hagino3000
0
190
論文紹介 Balancing Relevance and Discovery to Inspire Customers in the IKEA App
hagino3000
0
730
Other Decks in Business
See All in Business
株式会社エクセレントケアシステム 品質管理部:中長期ビジョンと品質戦略の方向性
excare
0
290
AI駆動開発、 猫からシーサーへ進化中。 現場での実践と未来
eltociear
0
240
SREの技術力を評価させる技術
kesompochy
0
350
smile PDF
piza
0
460
AnyMind Group Company Deck (JP)
anymind
3
110k
“なぜか進まない” 新規事業: 『考えすぎ/走りすぎ』の罠を越え、 明確なプロダクトゴールと高まるスプリント価値
mkitahara01985
3
230
株式会社メンバーズ キャリア採用向け会社紹介資料
mem_hrpr
PRO
0
14k
01_全社_FLUX採用ピッチ資料_Ver.5.0
flux
PRO
5
160k
一人目PdMとして、まず"自分"をPMFさせることから考える
nealle
0
340
チームでドキュメントを育て、 質を高める装置としてのCursor
takuyeah
1
1.1k
株式会社AGRI SMILE - Culture Deck
agrismile
0
34k
デジタル庁のデータ分析基盤におけるdbtの活用
haseryo
1
130
Featured
See All Featured
Measuring & Analyzing Core Web Vitals
bluesmoon
7
460
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
Speed Design
sergeychernyshev
30
970
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
For a Future-Friendly Web
brad_frost
178
9.7k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.6k
Designing for humans not robots
tammielis
253
25k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Stop Working from a Prison Cell
hatefulcrawdad
269
20k
Testing 201, or: Great Expectations
jmmastey
42
7.5k
Building Adaptive Systems
keathley
41
2.6k
Visualization
eitanlees
146
16k
Transcript
εϚʔτϑΥϯ͚ Πϯλʔωοτࠂ৴γεςϜ ʹ͓͚Δ৴࠷దԽ 5BLBTIJ/JTIJCBZBTIJ %"56.456%*0$POGFSFODFՆ
Agenda 1.ࣗݾհ 2.ΞυωοτϫʔΫͱωοτࠂۀքʹ͍ͭͯ 1.ωοτࠂϏδωεͷ֓ཁ 2.ࠂ৴ͰΘΕΔਓೳཁૉٕज़ 3.ฐࣾࣄྫͷհ 1.ΫϦοΫ୯Ձͷௐઅ 2.৴͢Δࠂͷબ
ࣗݾհ ID: hagino3000 Name: ྛ (Takashi Nishibayashi) Job: Software
Engineer ݱࡏZucks AdNetworkʹͯ৴ϩδοΫ ͷ։ൃΛ୲ɻσʔλੳج൫ͷߏங͔Β ػցֶशΛͬͨ༧ଌɺ࠷దԽॲཧ·Ͱɻ
࠷ۙͷ׆ಈ ਓೳֶձࢽ Vol. 32 No. 4 (2017/07) ͷʮࠂͱAI ಛूʯʹຊͷ༰ʹؔ࿈ ͨ͠هࣄΛدߘ͍ͯ͠·͢ɻ
ৄࡉʹڵຯ͕͋Δํ͝Ұಡ͍ͩ͘͞ɻ
Ad Networkͱ ✴ ΠϯλʔωοτͷσΟεϓϨΠࠂྖҬʹ͓͍ͯɺ ෳͷࠂओͱෳͷഔମࣾΛଋͶͯࠂΛ৴͢ ΔΈ ✴ ഔମࣾʹऩӹΛɺࠂओʹίϯόʔδϣϯΛ ͨΒ͢ͷ͕ࣄ ✴
ࠂϦΫΤετຖʹͲͷࠂΛ৴͢Δ͔ϩδοΫ Ͱܾఆ͍ͯ͠Δ
Ad Network ࠂೖߘ ࠂओ ഔମࣾ ࠂഔମ (ϝσΟΞ) ࠂ৴ ࠂඅ
ࠂऩӹ ΦʔσΟΤϯε Click
ωοτࠂ৴ͱ ਓೳཁૉٕज़ ✴ ৴͢Δࠂͷબ ✴ CTRɾCVR༧ଌ ✴ ϢʔβʔτϥοΩϯά ✴ ྫ:
ෳσόΠεΛލ͍ͩߪങߦಈͷ ✴ ࠂޮՌͷਪఆ ✴ ྫ: TV CMͷޮՌਪఆ ✴ ࠂΦʔΫγϣϯʹ͓͚ΔϦΞϧλΠϜೖࡳ
Zucks AdNetworkʹ͓͚Δ ࣄྫհ ✴ લఏ ✴ ৫ͷσʔλ׆༻εςʔδ ✴ Ad NetworkʹٻΊΒΕΔ৴
✴ ࣄྫ1. ΫϦοΫ୯Ձͷ࠷దԽ ✴ ࣄྫ2. ୳ࡧ৴ͷޮԽ
৫ͷσʔλ׆༻εςʔδ σʔλΛཷΊΒΕΔ σʔλ͕ར༻Ͱ͖ͳ͍ॴʹ͍͖ͳΓػցֶशΛͬͨ γεςϜΛσϓϩΠͰ͖ͳ͍ σʔλ͕Ҿ͖ग़ͤΔ ੳ͕Ͱ͖Δ ༧ଌॲཧͷγεςϜԽ ༧ଌ݁ՌΛͬͨऩӹͷ࠷େԽ ݕূͷ
Έ #*πʔϧͷಋೖ "#ςετ ҼՌޮՌਪ ཧ࠷దԽ ػցֶश ੳج൫ͷߏங
ཁһ֬อ ✴ ࠷ॳ͔ΒશͯͷϨΠϠʔͰඞཁͳεΩϧΛ࣋ͭਓࡐ Λἧ͑Δͷ͍͠ ✴ Γͳ͍ॴ͍͍ײ͡ʹิ͍ͬͯ͘ඞཁ͕͋Δ ✴ ֎෦……??
ղ͖͍ͨ ✴ ͍ͭ ✴ ୭ʹ or Ͳͷࠂʹ ✴ ͲͷࠂΛ ✴
(ΫϦοΫ୯Ձ) ͍͘ΒͰ ✴ දࣔ͢Δͷ͔
ఆࣜԽ ✴ ඪ ✴ ഔମࣾऩӹͷ࠷େԽ ✴ ੍݅ ✴ ࠂओͷඪCPA (ίϯόʔδϣϯ֫ಘ͋ͨΓͷίετ)
✴ ࠂओͷ༧ࢉ ✴ ࠂදࣔճ ͨͩ͠ ΫϦοΫɾίϯόʔδϣϯ ৴͠ͳ͍ͱΘ͔Βͳ͍
Ұͭͷ࠷దԽͱͯ͠ղ͚Εྑ͍ ͷͰ͕͢ɺ͍͠ͷͰෳͷʹ ͚ͯ։ൃͯ͠·͢
ΫϦοΫ୯Ձͷௐ ✴ CPA (ίϯόʔδϣϯ͋ͨΓͷ֫ಘίετ) Λࠂओ ͷཁʹ߹ΘͤΔͷ͕త ✴ ͋ΔࠂΩϟϯϖʔϯΛ৴͢Δͱͯ͠ ✴ ίϯόʔδϣϯ͕औΕΔͷ୯Ձ্͍͛ͨ
՝ ✴ ྫ ✴ ίϯόʔδϣϯ100% ✴ ΫϦοΫ୯Ձ100ԁͳΒCPA100ԁͱͳΔ ✴ ͳΔ͘৴ͷॳظஈ֊ʹ͓͍ͯίϯόʔδϣϯ Λਪఆ͍ͨ͠
✴ ͔͠͠ɺ৴ॳظΫϦοΫͷαϯϓϧαΠζ͕খ ͘͞౷ܭతʹྑ͍ͱѱ͍ͱݴ͑ͳ͍
CVRਪఆ ✴ ίϯόʔδϣϯͷࣅͨಉ࢜Ͱ͋ΕɺCVRۙ͘ ͳΔͣɻ͜ΕΛࣄલͱͯ͑͠ͳ͍͔ ✴ ࣅͨಉ࢜ͷू߹ΫϥελϦϯάͰٻΊΔ ✴ ࣄલ֬Λಋೖ͠ɺϕΠζͷఆཧʹΑΓΫϦοΫ n ͷ
͏ͪ k ݸͷίϯόʔδϣϯΛ؍ଌͨ͠ޙͷ CVR ͷࣄޙ ֬Λߟ͑ΔɻCVRͷࣄલΛϕʔλBeta(α, β) ͱ͢ΔͱɺCVRͷࣄޙϕʔλʹͳΔɻ
݁Ռݕূ1 ✴ ༧ଌਫ਼ΦϑϥΠϯ࣮ݧͰݕূͰ͖Δ ✴ RMSE, Accuracy, Precision, F-value …. ✴
ϏδωεαΠυ͕Γ͍ͨͷɺ༧ଌ͕ͨΔࣄʹΑ ΔܦӦࢦඪͷӨڹ (ྫ: ച্) ༧ଌਫ਼͕YY্͕Γ·ͨ͠ ച্Ͳ͏ͳΔͷʜʜ
݁Ռݕূ2 ✴ ࣮ࡍʹCPA͕ඪCPAʹۙ͘ͳΔͷ͔ɺຊ൪ʹϦϦʔ εͯ͠ݕূ ✴ log(࣮CPA/ඪCPA) ΛطଘϩδοΫద༻Ωϟϯ ϖʔϯͱൺֱɻରͰݟΔͷɺ2ഒʹͳΔͷͱ ʹͳΔͷΛಉ͡ΠϯύΫτͱͯ͠ଊ͑ΔͨΊɻ ✴
log(࣮CPA/ඪCPA) ͷʹ͍ͭͯϊϯύϥϝτ ϦοΫݕఆͰ͕ࠩ͋Δࣄͷ֬ೝͱ4ҐͷࠩΛΈΔ
ެ։൛ʹ͖ͭআ ݁Ռ
৴͢Δࠂͷબ ✴ ഔମऀऩӹͷߴ͍ࠂΛଟ͘৴͍ͨ͠ ✴ ΫϦοΫ͕ଟ͘ίϯόʔδϣϯऔΕΔ ✴ ݁ՌతʹΫϦοΫ୯Ձ্͛ΒΕΔ ✴ ޮՌ͕ྑ͍͔ѱ͍͔৴͠ͳ͍ͱΘ͔Βͳ͍ ✴
ࠂͱࠂͷΈ߹Θͤແʹ͋ΔͷͰૣ͘ྑ ͍Έ߹ΘͤΛҾ͖͍ͯͨ ✴ ࣝͷ׆༻ͱ୳ࡧͷδϨϯϚ
୳ࡧͱ׆༻ ✴ ׆༻ ✴ ʹͱͬͯऩӹ͕ߴ͍ͱΘ͔͍ͬͯΔࠂΛ৴ ✴ ࠷ߴ͍ͷΈΛ৴ͨ͠Βྑ͍༁Ͱͳ͍ ✴ طଘͷόϯσΟοτΞϧΰϦζϜΛͦͷ··͍ ʹ͍͘
✴ ୳ࡧ ✴ ʹͱͬͯऩӹ͕ະͷࠂΛ৴͢Δ
ଟόϯσΟοτʹΑΔ Ξϓϩʔν ✴ εϩοτϚγϯͷϝλϑΝʔ ✴ εϩοτϚγϯ͕ෳ͋ͬͨ࣌ʹͲΕΛԿճҾ͘ ͖͔ ✴ ϝϦοτ ✴
ڭࢣσʔλ͕ແ͍ॴ͔ΒελʔτͰ͖Δ ✴ ৽͍͠ࠂΩϟϯϖʔϯ͕࣍ʑͱೖߘ͞ΕΔઃఆ
୳ࡧͷޮԽ ✴ ͋Δʹ͓͚Δɺଞͷࠂͱͷൺֱ ✴ ଞͷࠂͱൺֱͯ͠ऩӹ͕ѱ͍ͱΘ͔ͬͨ࣌Ͱ୳ ࡧΛΊΕྑ͍ ✴ ऩӹੑ(eCPM)ͷ্քΛ͏ ✴ ֬తʹߴͯ͘͜Ε͙Β͍ͩΖ͏ɺͱ͍͏
✴ ৴Λଓ͚ΔࣄͰԼ͕͍ͬͯ͘
ݕূ ✴ ͷऩӹ͕Ͳ͏มԽ͔ͨ͠Λݟ͍ͨ ✴ ͔͠͠ɺऩӹ࣌ؒมԽͷӨڹΛڧ͘ड͚Δ ✴ ظʹ༧ࢉফԽ͕͋ΔͨΊɺඞͣ৳ͼΔ ✴ ୯७ʹϩδοΫมߋલޙͰൺֱͰ͖ͳ͍
ϥϯμϜԽൺֱࢼݧʹΑΔݕূ ϩδοΫͷมߋʹΑΔհೖ σʔλαϯϓϧɺԣ࣠࣌ؒ ࠂΛ܈ʹ͚ͯσʔλΛऔΔ
݁Ռ ެ։൛ʹ͖ͭআ
͋Γ͕ͱ͏͍͟͝·ͨ͠