Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
RSJ2024「基盤モデルの実ロボット応用」チュートリアルA(河原塚)
Search
Kento Kawaharazuka
September 06, 2024
Research
3
1.3k
RSJ2024「基盤モデルの実ロボット応用」チュートリアルA(河原塚)
既存の基盤モデルを実ロボットに応用する方法について
Kento Kawaharazuka
September 06, 2024
Tweet
Share
More Decks by Kento Kawaharazuka
See All by Kento Kawaharazuka
RSJ2025「オープンハードウェアと学習制御」チュートリアル2025(河原塚)
haraduka
3
480
RSJ2025「基盤モデルの実ロボット応用」チュートリアル2025-1(河原塚)
haraduka
2
960
MIRU2025 チュートリアル講演「ロボット基盤モデルの最前線」
haraduka
15
9.4k
Data-centric AI勉強会 「ロボットにおけるData-centric AI」
haraduka
0
960
RSJ2024学術ランチョンセミナー「若手・中堅による国際化リーダーシップに向けて」資料 (河原塚)
haraduka
0
520
RSJ2023「基盤モデルの実ロボット応用」チュートリアル1(既存の基盤モデルを実ロボットに応用する方法)
haraduka
5
2.3k
Other Decks in Research
See All in Research
CVPR2025論文紹介:Unboxed
murakawatakuya
0
180
財務諸表監査のための逐次検定
masakat0
0
170
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
300
Mamba-in-Mamba: Centralized Mamba-Cross-Scan in Tokenized Mamba Model for Hyperspectral Image Classification
satai
3
160
論文紹介:Safety Alignment Should be Made More Than Just a Few Tokens Deep
kazutoshishinoda
0
110
多言語カスタマーインタビューの“壁”を越える~PMと生成AIの共創~ 株式会社ジグザグ 松野 亘
watarumatsuno
0
140
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
180
長期・短期メモリを活用したエージェントの個別最適化
isidaitc
0
230
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
820
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
130
EOGS: Gaussian Splatting for Efficient Satellite Image Photogrammetry
satai
4
750
Integrating Static Optimization and Dynamic Nature in JavaScript (GPCE 2025)
tadd
0
110
Featured
See All Featured
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Building an army of robots
kneath
306
46k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.1k
For a Future-Friendly Web
brad_frost
180
10k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
950
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Thoughts on Productivity
jonyablonski
72
4.9k
How to Think Like a Performance Engineer
csswizardry
27
2.2k
Music & Morning Musume
bryan
46
6.9k
Building a Scalable Design System with Sketch
lauravandoore
463
33k
[RailsConf 2023] Rails as a piece of cake
palkan
57
6k
Transcript
1 2022.09.06 RSJ2024 基盤モデルの実ロボット応用 チュートリアルA 河原塚健人1, 松嶋達也1, 宮澤和貴2 (1東京大学, 2大阪大学)
本オーガナイズドセッションの目的 • ロボットのシステム構築が圧倒的に簡単に. 波に乗るしかない. • 海外の研究に置いて行かれないように最新情報をキャッチアップ • 国内で最新情報を共有して立ち向かう・追い越す 2
オーガナイザー 3 河原塚 健人 東京大学 松嶋 達也 東京大学 宮澤 和貴
大阪大学
これまでの活動(1) • 特集号「Real-World Robot Applications of Foundation Models」 @Advanced Robotics
4 • Survey Paper • NLP2024併設ワークショップ: 大規模言語モデルの実世界応用
これまでの活動(2) 5 • Cooking Robotics Workshop @ICRA2024
基盤モデルの実ロボット応用OS 6 RSJ2023 • 3セッション / 21件の発表 • 7機関: 東大,
慶應, 早稲田, 名工大, 立命館, 金沢大, 中部大 RSJ2024 • 4セッション / 27件の発表 • 20機関: 東大, 慶應, 早稲田, 阪大, 京大, Sony, RIKEN AIP, ATR, NII, TCRDL, 産総研, 名工大, 立命館, 創価大, トヨタ自動車, 富士通, 都 立大, 金沢工業, 中部大, ドワンゴ 様々な機関が基盤モデルを使うようになってきた
本チュートリアルの構成 チュートリアルA (河原塚) • 既存の基盤モデルの実ロボット活用例 チュートリアルB (松嶋) • ロボット基盤モデルを作る取り組み チュートリアルC
(宮澤) • 基盤モデルの対話活用について 7 大きな進展はない かなり進展がある 去年の資料 「基盤モデルの実ロボット応用」チュートリアル 去年の資料 「基盤モデルの実ロボット応用」チュートリアル 新規
活用可能な基盤モデルの種類@RSJ2023 8 Visual Prompting 全体的な性能アップ
活用可能な基盤モデルの種類(1) 9 GPT-4o Imagen3 全体的な性能アップ SAM 2
活用可能な基盤モデルの種類(2) 10 PIVOT [S. Nasiriany+, 2024] MOKA [F. Liu+, 2024]
Visual Prompting
活用可能な基盤モデルの種類(3) 11 Depth Anything [L. Yang+, 2024] FoundationPose [B. Wen+,
2024] MeshAnything [Y. Chen+, 2024] 4M [D. Mizrahi+, 2024] URDFormer [Z. Chen+, 2024] 多様なモダリティ
基盤モデルのロボット活用方法@RSJ2023 12
基盤モデルのロボット活用方法@RSJ2023 13 1. CLIPやDeticで認識/LLMで動作計画 2. Affordance/Rewardを構築して強化学習/MPC 3. マップやシーングラフを構築して動作計画 4. センサと制御入力の関係をデータ拡張/学習
チュートリアルBに譲る
基盤モデルのロボット活用方法(1) 14 Eureka [J. Ma+, 2023]
基盤モデルのロボット活用方法(1) 15 Eureka [J. Ma+, 2023]
基盤モデルのロボット活用方法(2) 16 DrEureka [J. Ma+, 2024]
我々の事例@2024 18
我々の事例 – VLMによる食材状態認識 19 [K. Kawaharazuka+, RA-L2024]
我々の事例 – LLM/VLMによる料理ロボット 20 [N. Kanazawa+, Advanced Robotics]
我々の事例 – LLMとPDDLの融合 • LLMとVLMでPDDL(Planning Domain Definition Language)を記述 21 [K.
Shirai+, ICRA2024]
我々の事例 – VLMと動作指令の統合 22 [K. Kawaharazuka+, Humanoids2023]
我々の事例 – 事前知識無しのナビゲーション 23 [K. Kawaharazuka+, Advanced Robotics]
まとめ • チュートリアルA • 既存の基盤モデルの実ロボット活用例 • 一方でRSJ2023からそこまで大きな進展はない • 活用可能な基盤モデルの種類 •
各基盤モデルの性能向上 / よりマルチモーダルへ • 基盤モデルの活用方法 • 基盤モデル×強化学習 / ロボット基盤モデル • 我々の研究事例 • 連続状態認識 / レシピ解釈 / PDDL / 運動指令との融合/ ナビゲーション 25