Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
レアジョブのデータ活用の今とこれから
Search
hayata-yamamoto
August 28, 2019
Technology
0
750
レアジョブのデータ活用の今とこれから
#rarejob_medpeer で使いました。
hayata-yamamoto
August 28, 2019
Tweet
Share
More Decks by hayata-yamamoto
See All by hayata-yamamoto
価値提供プロセスを試行錯誤し続けてきた話
hayata_yamamoto
0
120
AppSync と仲良くなろう
hayata_yamamoto
1
190
今日から機械学習チームを始めるには
hayata_yamamoto
0
120
医療と機械学習とMRI
hayata_yamamoto
0
210
ざっくりとわかる分析
hayata_yamamoto
0
160
Make Questions to Solve Problems ~how to use science as tool~
hayata_yamamoto
0
32
Other Decks in Technology
See All in Technology
10分で学ぶKubernetesコンテナセキュリティ/10min-k8s-container-sec
mochizuki875
3
330
Postman と API セキュリティ / Postman and API Security
yokawasa
0
200
Fanstaの1年を大解剖! 一人SREはどこまでできるのか!?
syossan27
2
160
バクラクのドキュメント解析技術と実データにおける課題 / layerx-ccc-winter-2024
shimacos
2
1.1k
組織に自動テストを書く文化を根付かせる戦略(2024冬版) / Building Automated Test Culture 2024 Winter Edition
twada
PRO
13
3.6k
宇宙ベンチャーにおける最近の情シス取り組みについて
axelmizu
0
110
生成AIのガバナンスの全体像と現実解
fnifni
1
180
Turing × atmaCup #18 - 1st Place Solution
hakubishin3
0
470
【re:Invent 2024 アプデ】 Prompt Routing の紹介
champ
0
140
なぜCodeceptJSを選んだか
goataka
0
160
マルチプロダクト開発の現場でAWS Security Hubを1年以上運用して得た教訓
muziyoshiz
2
2.2k
ブラックフライデーで購入したPixel9で、Gemini Nanoを動かしてみた
marchin1989
1
520
Featured
See All Featured
How GitHub (no longer) Works
holman
311
140k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
17
2.3k
Site-Speed That Sticks
csswizardry
2
190
Being A Developer After 40
akosma
87
590k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
111
49k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
45
2.2k
Automating Front-end Workflow
addyosmani
1366
200k
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.6k
Code Reviewing Like a Champion
maltzj
520
39k
Fashionably flexible responsive web design (full day workshop)
malarkey
405
66k
YesSQL, Process and Tooling at Scale
rocio
169
14k
Rebuilding a faster, lazier Slack
samanthasiow
79
8.7k
Transcript
レアジョブのデータ活用の今とこれから Hayata Yamamoto RareJob.inc
Self-intro - Name: - Hayata Yamamoto (24) - Role: -
Data Scientist @EdTech Lab - Likes: - Natural Language Processing - Data Engineering - Podcast - Recent: - Certificateをとりました
Today’s Theme データ活用の文化を維持しつつ、 より使いやすくするための分析基盤を作っている話
Agenda 1. どのようにデータは使われているか (As Is) 2. どのようにデータを使っていきたいか (To Be) 3.
どのように差分を埋めるか
どのようにデータを使っているか
Pros / Cons Pros: • エンジニアや企画職が SQLを書いて分析している • 分析結果を元に意思決定が行われる •
機械学習を用いた研究開発プロジェクトが進行中 Cons: • データウェアハウス( DWH)が形骸している • マイクロサービスのDBを横断的に利用できていない • 大規模なデータを使ったデータ分析がしにくい • データ分析に必要なドメイン知識が多い
What’s the problem? Pros: • エンジニアや企画職が SQLを書いて分析している • 分析結果を元に意思決定が行われる •
機械学習を用いた研究開発プロジェクトが進行中 Cons: • データウェアハウス( DWH)が形骸している • マイクロサービスのDBを横断的に利用できていない • 大規模なデータを使ったデータ分析がしにくい • データ分析に必要なドメイン知識が多い 技術的に問題を解決するだけで大幅にデータ活用が進むのでは? データ活用の意識がある 技術的に解決できる問題
解決法がわかっている 解決法がわかっていない 顕在化した 問題 データ分析によるプロダクト改善 データを使いやすくする データ活用の文化をつくる 潜在的な 問題 プロトタイピング
データマイニング 研究開発 (パーソナライズ、自動化など) データに関わる問題をマトリックスにまとめたもの
解決法がわかっている 解決法がわかっていない 顕在化した 問題 データ分析によるプロダクト改善 データを使いやすくする データ活用の文化をつくる 潜在的な 問題 プロトタイピング
データマイニング 研究開発 (パーソナライズ、自動化など) データ活用の文化はすでにあるのに、データが使いにくいのは大きな損失 →プロダクト改善がしにくくなってしまう
解決法がわかっている 解決法がわかっていない 顕在化した 問題 データ分析によるプロダクト改善 データを使いやすくする データ活用の文化をつくる 潜在的な 問題 プロトタイピング
データマイニング 研究開発 (パーソナライズ、自動化など) データが使いにくいと、試行錯誤の効率が非常に悪い →成果に結びつきにくくなってしまう
どのようにデータを使っていきたいか
None
None
None
要するに データ使って学習体験を向上させたい
どのように差分を埋めるか
As Is / To Be As Is • データを使って意思決定する文化を十分に活かせてない •
ノウハウやドメイン知識が属人化しがち • データへのアクセスが悪く、研究開発で試行錯誤しにくい To Be • プロダクトを通じてユーザーが英語を話せるようになる • 効率的な学習体験と新しい学習機会を提供する • それぞれの個人に合わせた学習ができるようにする
What’s the gaps? 1. データ分析する文化がある, but データが使いにくい 2. ユーザーに最適化したサービスを提供したい, but
知識が属人化しがち 3. 新しい体験を提供したい, but 研究開発の試行錯誤がしにくい データのアクセスや仕組みで解決できそう
How to solve? • BigQueryをハブにして、マイクロサービスからデータを集める ◦ データの整形やテーブルの整理をしておく • 全社で必要なデータをあらかじめ可視化しておく ◦
知見の共有、認識の統一、属人化の防止 • 集めたデータを再利用できるようにする ◦ 馴染みのあるツールや、新しいツールで使えるようにする (Redashなど) • 大規模なデータが必要な分析ロールはBQを直接叩く ◦ サーバーのスケールアウト問題からの脱却。データの再現性を確保
できる限りシンプルに
ToDo • 既存の仕組みはバッチ処理に最適化された設計になっている ◦ アプリやWebRTCなどもあるので、ストリームデータも将来的には扱いたい • AWSとGCPの使い分け、住み分け ◦ データの頻度や鮮度を求めると費用対効果を損なう懸念 •
マイクロサービスの開発とうまく並走させる ◦ 分析基盤を意識しないで済む設計にしたい • 分析基盤を一緒に作ってくれる仲間を見つける ◦ We’re Hiring!