Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
レアジョブのデータ活用の今とこれから
Search
hayata-yamamoto
August 28, 2019
Technology
0
820
レアジョブのデータ活用の今とこれから
#rarejob_medpeer で使いました。
hayata-yamamoto
August 28, 2019
Tweet
Share
More Decks by hayata-yamamoto
See All by hayata-yamamoto
困難は分割せよ。既存のサービスにナレッジベースなAI駆動開発を導入していくための一つの方略
hayata_yamamoto
0
130
知識を蓄積していくAI駆動開発
hayata_yamamoto
16
8.5k
価値提供プロセスを試行錯誤し続けてきた話
hayata_yamamoto
0
150
AppSync と仲良くなろう
hayata_yamamoto
1
220
今日から機械学習チームを始めるには
hayata_yamamoto
0
180
医療と機械学習とMRI
hayata_yamamoto
0
240
ざっくりとわかる分析
hayata_yamamoto
0
190
Make Questions to Solve Problems ~how to use science as tool~
hayata_yamamoto
0
44
Other Decks in Technology
See All in Technology
GeminiとNotebookLMによる金融実務の業務革新
abenben
0
240
事業成長の裏側:エンジニア組織と開発生産性の進化 / 20250703 Rinto Ikenoue
shift_evolve
PRO
1
450
ネットワーク保護はどう変わるのか?re:Inforce 2025最新アップデート解説
tokushun
0
150
Liquid Glass革新とSwiftUI/UIKit進化
fumiyasac0921
0
300
OPENLOGI Company Profile for engineer
hr01
1
33k
Fabric + Databricks 2025.6 の最新情報ピックアップ
ryomaru0825
1
160
さくらのIaaS基盤のモニタリングとOpenTelemetry/OSC Hokkaido 2025
fujiwara3
2
260
B2C&B2B&社内向けサービスを抱える開発組織におけるサービス価値を最大化するイニシアチブ管理
belongadmin
0
180
LangChain Interrupt & LangChain Ambassadors meetingレポート
os1ma
2
220
SpringBoot x TestContainerで実現するポータブル自動結合テスト
demaecan
0
120
Node-REDのFunctionノードでMCPサーバーの実装を試してみた / Node-RED × MCP 勉強会 vol.1
you
PRO
0
130
How Community Opened Global Doors
hiroramos4
PRO
1
130
Featured
See All Featured
A Modern Web Designer's Workflow
chriscoyier
694
190k
The Pragmatic Product Professional
lauravandoore
35
6.7k
Six Lessons from altMBA
skipperchong
28
3.9k
Balancing Empowerment & Direction
lara
1
390
Measuring & Analyzing Core Web Vitals
bluesmoon
7
500
Into the Great Unknown - MozCon
thekraken
39
1.9k
It's Worth the Effort
3n
185
28k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Art, The Web, and Tiny UX
lynnandtonic
299
21k
VelocityConf: Rendering Performance Case Studies
addyosmani
331
24k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Raft: Consensus for Rubyists
vanstee
140
7k
Transcript
レアジョブのデータ活用の今とこれから Hayata Yamamoto RareJob.inc
Self-intro - Name: - Hayata Yamamoto (24) - Role: -
Data Scientist @EdTech Lab - Likes: - Natural Language Processing - Data Engineering - Podcast - Recent: - Certificateをとりました
Today’s Theme データ活用の文化を維持しつつ、 より使いやすくするための分析基盤を作っている話
Agenda 1. どのようにデータは使われているか (As Is) 2. どのようにデータを使っていきたいか (To Be) 3.
どのように差分を埋めるか
どのようにデータを使っているか
Pros / Cons Pros: • エンジニアや企画職が SQLを書いて分析している • 分析結果を元に意思決定が行われる •
機械学習を用いた研究開発プロジェクトが進行中 Cons: • データウェアハウス( DWH)が形骸している • マイクロサービスのDBを横断的に利用できていない • 大規模なデータを使ったデータ分析がしにくい • データ分析に必要なドメイン知識が多い
What’s the problem? Pros: • エンジニアや企画職が SQLを書いて分析している • 分析結果を元に意思決定が行われる •
機械学習を用いた研究開発プロジェクトが進行中 Cons: • データウェアハウス( DWH)が形骸している • マイクロサービスのDBを横断的に利用できていない • 大規模なデータを使ったデータ分析がしにくい • データ分析に必要なドメイン知識が多い 技術的に問題を解決するだけで大幅にデータ活用が進むのでは? データ活用の意識がある 技術的に解決できる問題
解決法がわかっている 解決法がわかっていない 顕在化した 問題 データ分析によるプロダクト改善 データを使いやすくする データ活用の文化をつくる 潜在的な 問題 プロトタイピング
データマイニング 研究開発 (パーソナライズ、自動化など) データに関わる問題をマトリックスにまとめたもの
解決法がわかっている 解決法がわかっていない 顕在化した 問題 データ分析によるプロダクト改善 データを使いやすくする データ活用の文化をつくる 潜在的な 問題 プロトタイピング
データマイニング 研究開発 (パーソナライズ、自動化など) データ活用の文化はすでにあるのに、データが使いにくいのは大きな損失 →プロダクト改善がしにくくなってしまう
解決法がわかっている 解決法がわかっていない 顕在化した 問題 データ分析によるプロダクト改善 データを使いやすくする データ活用の文化をつくる 潜在的な 問題 プロトタイピング
データマイニング 研究開発 (パーソナライズ、自動化など) データが使いにくいと、試行錯誤の効率が非常に悪い →成果に結びつきにくくなってしまう
どのようにデータを使っていきたいか
None
None
None
要するに データ使って学習体験を向上させたい
どのように差分を埋めるか
As Is / To Be As Is • データを使って意思決定する文化を十分に活かせてない •
ノウハウやドメイン知識が属人化しがち • データへのアクセスが悪く、研究開発で試行錯誤しにくい To Be • プロダクトを通じてユーザーが英語を話せるようになる • 効率的な学習体験と新しい学習機会を提供する • それぞれの個人に合わせた学習ができるようにする
What’s the gaps? 1. データ分析する文化がある, but データが使いにくい 2. ユーザーに最適化したサービスを提供したい, but
知識が属人化しがち 3. 新しい体験を提供したい, but 研究開発の試行錯誤がしにくい データのアクセスや仕組みで解決できそう
How to solve? • BigQueryをハブにして、マイクロサービスからデータを集める ◦ データの整形やテーブルの整理をしておく • 全社で必要なデータをあらかじめ可視化しておく ◦
知見の共有、認識の統一、属人化の防止 • 集めたデータを再利用できるようにする ◦ 馴染みのあるツールや、新しいツールで使えるようにする (Redashなど) • 大規模なデータが必要な分析ロールはBQを直接叩く ◦ サーバーのスケールアウト問題からの脱却。データの再現性を確保
できる限りシンプルに
ToDo • 既存の仕組みはバッチ処理に最適化された設計になっている ◦ アプリやWebRTCなどもあるので、ストリームデータも将来的には扱いたい • AWSとGCPの使い分け、住み分け ◦ データの頻度や鮮度を求めると費用対効果を損なう懸念 •
マイクロサービスの開発とうまく並走させる ◦ 分析基盤を意識しないで済む設計にしたい • 分析基盤を一緒に作ってくれる仲間を見つける ◦ We’re Hiring!