Upgrade to Pro — share decks privately, control downloads, hide ads and more …

感染症の数理モデル1

Avatar for Daisuke Yoneoka Daisuke Yoneoka
February 15, 2024

 感染症の数理モデル1

Avatar for Daisuke Yoneoka

Daisuke Yoneoka

February 15, 2024
Tweet

More Decks by Daisuke Yoneoka

Other Decks in Research

Transcript

  1. ⽬次 1. 感染症のコンパートメントモデル 2. 基本再⽣産数 3. 最終流⾏規模 4. R実装 本書の内容をカバーします。

    具体的なコードなどは右の本 詳細なプログラムなどは https://github.com/objornstad/epimdr/tree/ master/rcode (結構間違ってる。。。) 2/48
  2. SIRモデル Kermack and McKendrick (1927) 4/20 <latexit sha1_base64="Aw425Lop8YfQ4vugYIF3fQA859A=">AAACuXicfVHbjtMwEHXDbQm3LjzyYlGBEGKrBHGTAGkFPNAHxMLS3ZWaqpo4k9SsHUf2BFFF+UK+gM/gFV5wui3aC2IkS0fnnPF4jtNKSUdR9KMXnDt/4eKljcvhlavXrt/ob97cc6a2AsfCKGMPUnCoZIljkqTwoLIIOlW4nx6+6fT9r2idNOVnWlQ41VCUMpcCyFOzPt5LstyCaLLdtsmo5a/4VpIiAd/lI54k4V99tNb5Sh/xLZ4UoDXw0XHjp7VxLYbhrD+IhtGy+FkQr8CArWpnttl7mWRG1BpLEgqcm8RRRdMGLEmhsA2T2mEF4hAKnHhYgkY3bZZ5tPyuZzKeG+tPSXzJHu9oQDu30Kl3aqC5O6115L+0SU3582kjy6omLMXRoLxWnAzvwuWZtChILTwAYaV/Kxdz8KmQ/4ITU7q7yRjl/Cpv0a9o8b2nPlRogYx90CRgCy3L1q9cJA879D8jfFsbPVrmHZ9O9yzYezSMnw6ffHw82H69Sn6D3WZ32H0Ws2dsm71jO2zMBPvOfrJf7HfwIoBgHnw5sga9Vc8tdqIC9wfgutdU</latexit> dS dt

    = SI dI dt = SI I dR dt = I 感受性⼈⼝ 感染性⼈⼝ 治癒⼈⼝ 仮定 1. Sは病原体に暴露次第Iへ移⾏ 2. ⼆次感染はIのみ 3. Iは⼀定期間で⾃動的にRへ以降 4. 治癒後は免疫がつき⼆度⽬の感染はない (=RからSやIに移⾏はない) 意味: SとIの⼈数に⽐例した⼈数だけIに⾏く は感染⼒(⼀⼈のSが⼆次感染する率) 意味: (第⼀項)SとIの⼈数に⽐例した⼈数だけIに来た (第⼆項)γの割合だけ治ってIへいく 意味: γの割合だけ治ってIからきた β: 伝達率 1⼈のIが1⼈のSと接触する率 γ:治癒率 平均感染期間D の逆数(γ=1/D) (逆に、D=1/γなので、γがわかるとDがわかる) <latexit sha1_base64="KiuUxCGDoouemn4CwdEFHjafzu0=">AAACZ3icfVBdSxtBFJ2sH7XxK1Yogi+jQRApYVeq9UFB1Ad9KLVgVMiGcHdyEwdnZ5aZu2JY8lv6Wn+SP8F/4WxMoWrpgYHDuefOvfckmZKOwvCxEkxMTk1/mPlYnZ2bX1isLX26dCa3ApvCKGOvE3CopMYmSVJ4nVmENFF4ldwel/WrO7ROGn1BgwzbKfS17EkB5KVObTlOkICfcX7AY+X7ulDt1OphIxyBvyfRmNTZGOedpcp+3DUiT1GTUOBcKwozahdgSQqFw2qcO8xA3EIfW55qSNG1i9H2Q77hlS7vGeufJj5S/+4oIHVukCbemQLduLe1UvxXrZVTb69dSJ3lhFq8DOrlipPhZRS8Ky0KUgNPQFjpd+XiBiwI8oG9mlL+TcYo5085QX+ixe9e+pGhBTJ2q4jB9lOph/7kfvylZP8zwv0fo2fVMu/obbrvyeV2I9pt7Pz8Wj88Gic/w1bZOttkEfvGDtkpO2dNJtiA/WK/2UPlKVgMPgcrL9agMu5ZZq8QrD0D6Wm56w==</latexit> I = <latexit sha1_base64="P3u458EFEPOF+uskm1we2BhddFU=">AAACX3icfVBdSxtBFJ2sWjVVG+2T9GUwFERL2C1+PSiI9kEf2qptVEgWuTu5iYOzM+vM3WJY8jt8bX+Wj/4TZ2MKfpReuHA499yvk2RKOgrDu0owNj7xZnJquvp2ZnbuXW1+4dSZ3ApsCqOMPU/AoZIamyRJ4XlmEdJE4VlytV/Wz36hddLon9TPME6hp2VXCiBPxd/4Dv/BV/mhz5OLWj1shMPgr0E0AnU2iqOL+cp2u2NEnqImocC5VhRmFBdgSQqFg2o7d5iBuIIetjzUkKKLi+HVA/7RMx3eNdanJj5kn3YUkDrXTxOvTIEu3ctaSf6r1sqpuxUXUmc5oRaPi7q54mR4aQHvSIuCVN8DEFb6W7m4BAuCvFHPtpSzyRjl/Ctf0L9o8aunvmdogYxdKdpge6nUA/9yr/2pRP8Tws1foUfVqvc7eunua3D6uRFtNNaP1+q7eyPnp9gHtsSWWcQ22S47YEesyQS7ZrfsN/tTuQ8mg7mg9igNKqOe9+xZBIsPKF22SA==</latexit> N = S + I + R
  3. 感染時刻からの経過時間も考慮しよう Iの⼈って、感染したときからずっと同じ感染⼒もたないよね? →伝達率βや治癒率γは感染齢a(感染時刻からの経過時間)に依存 5/20 <latexit sha1_base64="gKvdUdHUfZkI494qnQB0eyJKqIY=">AAADXHicfVJdb9MwFHXawUbHYAOJF14sKqYWtipFfD2ANAEP8IAYH90m1aW6cZzUmuNE9g2iivIveIX/xQu/BSfLYO0YlqIc33uPz73HDjIlLfr+T6/VXrl0eXXtSmf96sa165tbNw5smhsuRjxVqTkKwAoltRihRCWOMiMgCZQ4DI5fVvnDL8JYmepPOM/EJIFYy0hyQBeabnmr2yyMDPAi/NjDflmEWNLndLfaMKlx6n92vwjnlAUCoQd9+qaHO9APgTLW2a53ft9RLmacEqp6pkSEvUaSZWBQgir/IIrl/YuTUDIj4xk2JzpRustiSJK/KrVGM9CHMwMtdbZICqHTmW52/YFfL3oeDBvQJc3ad9Y9Y2HK80Ro5AqsHQ/9DCdF1StXouyw3IoM+DHEYuyghkTYSVFfWUnvukhIo9S4TyOto2cZBSTWzpPAVSaAM7ucq4L/yo1zjJ5OCqmzHIXmJ0JR7oxNaXX/NJRGcFRzB4Ab6XqlfAbOL3SvZEGlOhvTVFk3yivhRjTirQu9y4QBTM29goGJE6lLN3LMdir0v0L4elroUO33cNnd8+DgwWD4ePDo/cPu3ovG+TVym9whPTIkT8geeU32yYhwT3vfvO/ej9av9kp7vb1xUtryGs5NsrDat34DAGsLsg==</latexit> dS(t) dt = S(t)

    Z 1 0 (a)I(t, a)da I(t, 0) = S(t) Z 1 0 (a)I(t, a)da ✓ @ @t + @ @a ◆ I(t, a) = (a)I(t, a) dR(t) dt = Z 1 0 (a)I(t, a)da 意味: 感染齢a=0の時の感染⼈⼝ = 新規感染者数 意味: 感染齢aの時の感染⼒は <latexit sha1_base64="gKvdUdHUfZkI494qnQB0eyJKqIY=">AAADXHicfVJdb9MwFHXawUbHYAOJF14sKqYWtipFfD2ANAEP8IAYH90m1aW6cZzUmuNE9g2iivIveIX/xQu/BSfLYO0YlqIc33uPz73HDjIlLfr+T6/VXrl0eXXtSmf96sa165tbNw5smhsuRjxVqTkKwAoltRihRCWOMiMgCZQ4DI5fVvnDL8JYmepPOM/EJIFYy0hyQBeabnmr2yyMDPAi/NjDflmEWNLndLfaMKlx6n92vwjnlAUCoQd9+qaHO9APgTLW2a53ft9RLmacEqp6pkSEvUaSZWBQgir/IIrl/YuTUDIj4xk2JzpRustiSJK/KrVGM9CHMwMtdbZICqHTmW52/YFfL3oeDBvQJc3ad9Y9Y2HK80Ro5AqsHQ/9DCdF1StXouyw3IoM+DHEYuyghkTYSVFfWUnvukhIo9S4TyOto2cZBSTWzpPAVSaAM7ucq4L/yo1zjJ5OCqmzHIXmJ0JR7oxNaXX/NJRGcFRzB4Ab6XqlfAbOL3SvZEGlOhvTVFk3yivhRjTirQu9y4QBTM29goGJE6lLN3LMdir0v0L4elroUO33cNnd8+DgwWD4ePDo/cPu3ovG+TVym9whPTIkT8geeU32yYhwT3vfvO/ej9av9kp7vb1xUtryGs5NsrDat34DAGsLsg==</latexit> dS(t) dt = S(t) Z 1 0 (a)I(t, a)da I(t, 0) = S(t) Z 1 0 (a)I(t, a)da ✓ @ @t + @ @a ◆ I(t, a) = (a)I(t, a) dR(t) dt = Z 1 0 (a)I(t, a)da 意味: 時刻が1進むときの治癒⼈数 時刻tが1進むとaも1進むことに注意(だから偏微分 の合計でOK) 意味:感染齢aのときの治癒⼈数は <latexit sha1_base64="gKvdUdHUfZkI494qnQB0eyJKqIY=">AAADXHicfVJdb9MwFHXawUbHYAOJF14sKqYWtipFfD2ANAEP8IAYH90m1aW6cZzUmuNE9g2iivIveIX/xQu/BSfLYO0YlqIc33uPz73HDjIlLfr+T6/VXrl0eXXtSmf96sa165tbNw5smhsuRjxVqTkKwAoltRihRCWOMiMgCZQ4DI5fVvnDL8JYmepPOM/EJIFYy0hyQBeabnmr2yyMDPAi/NjDflmEWNLndLfaMKlx6n92vwjnlAUCoQd9+qaHO9APgTLW2a53ft9RLmacEqp6pkSEvUaSZWBQgir/IIrl/YuTUDIj4xk2JzpRustiSJK/KrVGM9CHMwMtdbZICqHTmW52/YFfL3oeDBvQJc3ad9Y9Y2HK80Ro5AqsHQ/9DCdF1StXouyw3IoM+DHEYuyghkTYSVFfWUnvukhIo9S4TyOto2cZBSTWzpPAVSaAM7ucq4L/yo1zjJ5OCqmzHIXmJ0JR7oxNaXX/NJRGcFRzB4Ab6XqlfAbOL3SvZEGlOhvTVFk3yivhRjTirQu9y4QBTM29goGJE6lLN3LMdir0v0L4elroUO33cNnd8+DgwWD4ePDo/cPu3ovG+TVym9whPTIkT8geeU32yYhwT3vfvO/ej9av9kp7vb1xUtryGs5NsrDat34DAGsLsg==</latexit> dS(t) dt = S(t) Z 1 0 (a)I(t, a)d I(t, 0) = S(t) Z 1 0 (a)I(t, a)da ✓ @ @t + @ @a ◆ I(t, a) = (a)I(t dR(t) dt = Z 1 0 (a)I(t, a)da 感染者がどう変化するかの式が2つに別れた!
  4. 基本再⽣産数 R0 知りたいのは、流⾏(epidemic)が起こるのか? 6/20 <latexit sha1_base64="LgBXHs3a4r/G6q4Gk1pB0As+k2Q=">AAACz3icfVFbb9MwFHbCZSNc1sIjLxYVaCBaJYgNHhiagAf6gNgY3SY1VXXinGTW7DiyHaCKgnjlJ/LIP8FtU7QL4kiWPn2XOOdzUgpubBj+8vwrV69dX1u/Edy8dfvORqd799CoSjMcMSWUPk7AoOAFjiy3Ao9LjSATgUfJ6du5fvQFteGq+GxnJU4k5AXPOAPrqGmnfhSnmQZWpwdNndqG7tB+nKAFekCHNI6Dv/pwpdNWH9I+jXOQEpxzh262dH/JPR6+Ds/GP63iq0gQTDu9cBAuhl4GUQt6pJ29add7FaeKVRILywQYM47C0k5q0JYzgU0QVwZLYKeQ49jBAiSaSb1oqaEPHZPSTGl3CksX7NlEDdKYmUycU4I9MRe1OfkvbVzZ7OWk5kVZWSzY8qKsEtQqOq+cplwjs2LmADDN3b9SdgKuFese5twt829bpYRxq7xDt6LGD476WKIGq/STOgadS140buU8fjpH/zPCt5XRoUXf0cV2L4PDZ4Noe7C1/7y3+6Ztfp3cJw/IJonIC7JL3pM9MiKM/PbWvI7X9ff9r/53/8fS6ntt5h45N/7PPzcV268=</latexit> dS dt = SI

    dI dt = SI I = ( S )I > 0 dR dt = I • I>0は当たり前なの で、実質ここが正 • t=0(初期)では S=N(IとRがいない) <latexit sha1_base64="5UR3Q1gCVQ+AfJmy8gWT2mIaFjo=">AAACd3icfVDbThRBEO0db7heAH30gY4bDTFmM0NQeCCGKA+8qGhcINnZbGp6a4YOfRm7awibyXyAX+Orfgqfwhs9y5oIGCvp5OTUqao+JyuV9BTHZ53o1u07d+8t3O8+ePjo8eLS8pN9bysncCCssu4wA49KGhyQJIWHpUPQmcKD7PhD2z84QeelNd9oWuJIQ2FkLgVQoMZLva/jmKf4vZInPJ3kDkSdZkjQ1GkBWkPz6V0SVHE/nhW/CZI56LF57Y2XO1vpxIpKoyGhwPthEpc0qsGRFAqbblp5LEEcQ4HDAA1o9KN65qbhLwIz4bl14RniM/bviRq091OdBaUGOvLXey35r96wonxzVEtTVoRGXB7KK8XJ8jYaPpEOBalpACCcDH/l4ghCJBQCvHKl3U3WKh+s7GCw6PBjoD6X6ICse1Wn4AotTRMsF+nrFv1PCKd/hAF1uyHv5Hq6N8H+Wj9523/zZb23/X6e/AJ7xp6zVZawDbbNdtkeGzDBfrCf7Bf73TmPVqKX0eqlNOrMZ56yKxUlF/DCwc0=</latexit> R0 ⌘ N > 1 基本再⽣産数 ⼀⼈の感染者が起こす⼆次感染の総数 <latexit sha1_base64="HB7u1JxdbR6H6NBAErm2Ru0rf/I=">AAADDXicfVFbb9MwFHbCbYRbNx55wKICbWxUyRiXh02auEi8wAZqt4m6rRz3JLWW2MF2YJWV38Cv4QEJ8cpv4N/gpEXQDXEiW1++853j489xkXFtwvCn5587f+HipaXLwZWr167faC2vHGhZKgY9JjOpjmKqIeMCeoabDI4KBTSPMziMj5/X+cOPoDSXomumBQxymgqecEaNo0atr+/xvR38bhSuuzXcbPaH62QsjcaEBC5HdJmPLN+JqqHtVrV0yDE5UTydGKqU/GS75M8PJlwkZloFmMSQcmGZG05XARknijIbVTZ64FpUBBOMVx3ajtYIwcGsDDc0WfgaFUnhA47WAgJiPG85arXDTtgEPguiOWijeeyPlr1tdy9W5iAMy6jW/SgszMBSZTjLwM1YaigoO6Yp9B0UNAc9sI3HFb7rmDFOpHJLGNywf1dYmms9zWOnzKmZ6NO5mvxXrl+a5OnAclGUBgSbHZSUGTYS1w+Gx1wBM9nUAcoUd7NiNqHOTOOedeGUureRMqvtfgHuigpeO2qvAEWNVPctoSrNuajclVOyUaP/CenJb6FDQeD8jk67exYcbHaix51Hb7fau8/mzi+hW+gOWkUReoJ20Su0j3qIebe9l94bb8//7H/xv/nfZ1Lfm9fcRAvh//gF9D3xfA==</latexit> Z = R0 + R2 0 + R3 0 + . . . = T X i=1 Ri 0 T !1 ! 8 < : 1 1 R0 (R0 < 1) 1 (R0 1) 重要な関係式: ⼀⼈⽬はR0 に⼆次感染、その次の⼈もR0 ⼈に⼆次感染、その次の⼈も、、、となっていくと最終的には何⼈感染するの? • ⼀⼈が必ずR0 に⼆次感染させるなら、 総感染者数Zは収束 or 発散 • Zがどれくらいになるか⾒積もれる!
  5. 最終流⾏規模 (Final epidemic size) もうちょっと現実的に⼈⼝あたりで考える SIRには2つの均衡点 (s, i, r) =

    (1, 0 , 0)と(s*, 0, r*) 7/20 t→∞としたときに感染者は0⼈になり、 s* (= s(∞)): 何%が感染を逃れたか r* (= r(∞)): 何%が感染したか <latexit sha1_base64="GZ7GT/t1BrHuSYH75Oq0B+oFT9Y=">AAACunicfVFda9RAFJ2NH63xo1t99GVwUUTskohVHyoU9cEXsYLbFjbLcjO5SYedyYSZG3EJ+Yf+Af+Gr/rgZJsVuxUvDBzOOXfu3DNppaSjKPo+CK5cvXZ9a/tGePPW7Ts7w927x87UVuBEGGXsaQoOlSxxQpIUnlYWQacKT9LF204/+YLWSVN+pmWFMw1FKXMpgDw1H+aPkiy3IJrMtU1GLX/N95IUCbjjkidJ+EeXa533uuR7PClAa9hw2rVzrYbhfDiKxtGq+GUQ92DE+jqa7w4OksyIWmNJQoFz0ziqaNaAJSkUtmFSO6xALKDAqYclaHSzZhVIyx96JuO5sf6UxFfs3x0NaOeWOvVODXTmNrWO/Jc2rSl/NWtkWdWEpTgflNeKk+FdujyTFgWppQcgrPRv5eIMfCrk/+DClO5uMkY5v8o79Cta/OCpjxVaIGOfNAnYQsuy9SsXydMO/c8IX9dGj1Z5x5vpXgbHz8bxi/H+p+ejwzd98tvsPnvAHrOYvWSH7D07YhMm2Df2g/1kv4KDIA1ksDi3BoO+5x67UAH9BsO72J4=</latexit> ds dt = si di dt = si i dr dt = i <latexit sha1_base64="TWw88aSbJzklo45MPjvq1kp19nw=">AAACinicfZDfThNBFManKyBWkCKX3kxsTAwhzS5B/gRJiHKhFygqBZJu05ydni0TZmc2M2eNzWbfxKfxVl/At3G2rUHAcJJJvvzON3PmfEmupKMw/N0IHszNLzxcfNR8vLT8ZKW1+vTMmcIK7AqjjL1IwKGSGrskSeFFbhGyROF5cvW27p9/Reuk0ac0zrGfwUjLVAogjwatbccPeDxMLYjyS1V+qDa4vCbvp8Rek8814c1Bqx12wknxuyKaiTab1clgtfE6HhpRZKhJKHCuF4U59UuwJIXCqhkXDnMQVzDCnpcaMnT9crJgxV94MuSpsf5o4hP6740SMufGWeKdGdClu92r4f96vYLS3X4pdV4QajEdlBaKk+F1WnwoLQpSYy9AWOn/ysUl+CDIZ3pjSv02GaOcX+UI/YoWjz36mKMFMna9jMGOMqkrv/Io3qjVfUb49tfoVbPOO7qd7l1xttmJtjuvPm21D9/Mkl9kz9hz9pJFbIcdsnfshHWZYN/ZD/aT/QqWgs1gL9ifWoPG7M4au1HB0R/C28bI</latexit> s = S N , i = I N , r = R N <latexit sha1_base64="Aw425Lop8YfQ4vugYIF3fQA859A=">AAACuXicfVHbjtMwEHXDbQm3LjzyYlGBEGKrBHGTAGkFPNAHxMLS3ZWaqpo4k9SsHUf2BFFF+UK+gM/gFV5wui3aC2IkS0fnnPF4jtNKSUdR9KMXnDt/4eKljcvhlavXrt/ob97cc6a2AsfCKGMPUnCoZIljkqTwoLIIOlW4nx6+6fT9r2idNOVnWlQ41VCUMpcCyFOzPt5LstyCaLLdtsmo5a/4VpIiAd/lI54k4V99tNb5Sh/xLZ4UoDXw0XHjp7VxLYbhrD+IhtGy+FkQr8CArWpnttl7mWRG1BpLEgqcm8RRRdMGLEmhsA2T2mEF4hAKnHhYgkY3bZZ5tPyuZzKeG+tPSXzJHu9oQDu30Kl3aqC5O6115L+0SU3582kjy6omLMXRoLxWnAzvwuWZtChILTwAYaV/Kxdz8KmQ/4ITU7q7yRjl/Cpv0a9o8b2nPlRogYx90CRgCy3L1q9cJA879D8jfFsbPVrmHZ9O9yzYezSMnw6ffHw82H69Sn6D3WZ32H0Ws2dsm71jO2zMBPvOfrJf7HfwIoBgHnw5sga9Vc8tdqIC9wfgutdU</latexit> dS dt = SI dI dt = SI I dR dt = I <latexit sha1_base64="xH6Y+u0OyWqjHpz+UFtZmTKuzBw=">AAACa3icfVBdSxtBFJ2sttX0K+qDYPswNAhWatgt2vZBIVgf+lJqS6NCNg13JzfJkNmZZeZuMSz5Nb7qD/JH+B+cTVKoWnph4My5586dc5JMSUdheF0JFhYfPX6ytFx9+uz5i5e1ldUTZ3IrsCWMMvYsAYdKamyRJIVnmUVIE4Wnyehz2T/9jdZJo3/SOMNOCgMt+1IAeapbW+f21zY/4NFOjOfZ1o6//eiGb3m3Vg8b4bT4QxDNQZ3N67i7UtmPe0bkKWoSCpxrR2FGnQIsSaFwUo1zhxmIEQyw7aGGFF2nmDqY8E3P9HjfWH808Sn790QBqXPjNPHKFGjo7vdK8l+9dk79T51C6iwn1GK2qJ8rToaXcfCetChIjT0AYaX/KxdDsCDIh3ZnS/k2GaOct3KE3qLFr576lqEFMna7iMEOUqkn3vIgflei/wnh/I/Qo2rV5x3dT/chOHnfiD409r7v1puH8+SX2Cv2hm2xiH1kTfaFHbMWE2zCLtglu6rcBGvBRvB6Jg0q85k1dqeCzVssRLpl</latexit> r⇤ = 1 exp( r⇤R0) <latexit sha1_base64="y4Drxc9cmIJphOIsqsikfGkQF1o=">AAACkHicfVDbahRBEO0db3G9ZBMffWlchBjMMiOa5CFivDyIIEZxk8DOutT01kya9GXsrgkuw/yMX+Orvvk39mw2YBKxoJvDOVVdfU5WKukpjn93oitXr12/sXSze+v2nbvLvZXVfW8rJ3AorLLuMAOPShockiSFh6VD0JnCg+z4dasfnKDz0prPNCtxrKEwMpcCKFCT3s6nScxT/FrJE55OcweiTjMkaOq0AK2h4c/5xpmgbLGWbLgv64+aOtzNpNePB/G8+GWQLECfLWpvstLZSadWVBoNCQXej5K4pHENjqRQ2HTTymMJ4hgKHAVoQKMf13ObDX8YmCnPrQvHEJ+zf0/UoL2f6Sx0aqAjf1FryX9po4ry7XEtTVkRGnG6KK8UJ8vbzPhUOhSkZgGAcDL8lYsjCJFQSPbclvZtslb5YOUNBosO3wfqQ4kOyLr1OgVXaGmaYLlIH7fof43w7awxoG435J1cTPcy2H8ySDYHzz4+7e++WiS/xO6zB2yNJWyL7bK3bI8NmWDf2Q/2k/2KVqPt6EX08rQ16ixm7rFzFb37A4hZykI=</latexit> R0 ⌘ = log(1 r⇤) r⇤ 新しい基本再⽣産数 r*にてつい て解く (解析的には解けないので)数値計算 <latexit sha1_base64="lxjKR111eVZZbnFb7RGt1wYQNmw=">AAACbnicfVBdaxNBFJ1sq7bxK63Qh4o4GIRY2rAravvgQ6l98EWsYtpCNoa7k5t06OzMMHNXEpaAv8ZX+3f6L/oTOptGsK14YeBw7rn3zjmZVdJTHJ/XooXFO3fvLS3X7z94+OhxY2X10JvCCewIo4w7zsCjkho7JEnhsXUIeabwKDv9UPWPfqDz0uhvNLHYy2Gk5VAKoED1G+vcfd/gKVjrzJgnWymObWvraz9+xfuNZtyOZ8Vvg2QOmmxeB/2V2vt0YESRoyahwPtuElvqleBICoXTelp4tCBOYYTdADXk6HvlzMSUvwzMgA+NC08Tn7F/T5SQez/Js6DMgU78zV5F/qvXLWi40yultgWhFleHhoXiZHiVCB9Ih4LUJAAQToa/cnECDgSF3K5dqXaTMcoHK/sYLDr8FKjPFh2QcRtlCm6USz0NlkfpZoX+J4TxH2FA9XrIO7mZ7m1w+LqdvGu//fKmubs3T36JPWUvWIslbJvtso/sgHWYYD/ZL/abndUuorXoWfT8ShrV5jNP2LWKWpchkrxC</latexit> r⇤ ⇡ 1 exp( R0) R0 が⼤きいとき はr*≒1なので R0 だけから、最終的な流⾏規模が⾒積もれる! 求め⽅:上の3番⽬を1番⽬に代⼊し て積分するだけ
  6. ここまでのまとめ 簡単なSIRからでもいろんなことがわかるよ! 1.伝達率β(1⼈のIが1⼈のSと接触する率)と治癒率γが分かればR0 がわかる 2. 平均感染期間D=1/γ なので、γ=1/Dでγがわかる 3.β=R0 γなので、R0 とγが分かればβがわかる

    4. R0 が分かれば、最終規模 r*(t→∞で何%が感染したか) がわかる 8/20 <latexit sha1_base64="y4Drxc9cmIJphOIsqsikfGkQF1o=">AAACkHicfVDbahRBEO0db3G9ZBMffWlchBjMMiOa5CFivDyIIEZxk8DOutT01kya9GXsrgkuw/yMX+Orvvk39mw2YBKxoJvDOVVdfU5WKukpjn93oitXr12/sXSze+v2nbvLvZXVfW8rJ3AorLLuMAOPShockiSFh6VD0JnCg+z4dasfnKDz0prPNCtxrKEwMpcCKFCT3s6nScxT/FrJE55OcweiTjMkaOq0AK2h4c/5xpmgbLGWbLgv64+aOtzNpNePB/G8+GWQLECfLWpvstLZSadWVBoNCQXej5K4pHENjqRQ2HTTymMJ4hgKHAVoQKMf13ObDX8YmCnPrQvHEJ+zf0/UoL2f6Sx0aqAjf1FryX9po4ry7XEtTVkRGnG6KK8UJ8vbzPhUOhSkZgGAcDL8lYsjCJFQSPbclvZtslb5YOUNBosO3wfqQ4kOyLr1OgVXaGmaYLlIH7fof43w7awxoG435J1cTPcy2H8ySDYHzz4+7e++WiS/xO6zB2yNJWyL7bK3bI8NmWDf2Q/2k/2KVqPt6EX08rQ16ixm7rFzFb37A4hZykI=</latexit> R0 ⌘ = log(1 r⇤) r⇤ <latexit sha1_base64="xH6Y+u0OyWqjHpz+UFtZmTKuzBw=">AAACa3icfVBdSxtBFJ2sttX0K+qDYPswNAhWatgt2vZBIVgf+lJqS6NCNg13JzfJkNmZZeZuMSz5Nb7qD/JH+B+cTVKoWnph4My5586dc5JMSUdheF0JFhYfPX6ytFx9+uz5i5e1ldUTZ3IrsCWMMvYsAYdKamyRJIVnmUVIE4Wnyehz2T/9jdZJo3/SOMNOCgMt+1IAeapbW+f21zY/4NFOjOfZ1o6//eiGb3m3Vg8b4bT4QxDNQZ3N67i7UtmPe0bkKWoSCpxrR2FGnQIsSaFwUo1zhxmIEQyw7aGGFF2nmDqY8E3P9HjfWH808Sn790QBqXPjNPHKFGjo7vdK8l+9dk79T51C6iwn1GK2qJ8rToaXcfCetChIjT0AYaX/KxdDsCDIh3ZnS/k2GaOct3KE3qLFr576lqEFMna7iMEOUqkn3vIgflei/wnh/I/Qo2rV5x3dT/chOHnfiD409r7v1puH8+SX2Cv2hm2xiH1kTfaFHbMWE2zCLtglu6rcBGvBRvB6Jg0q85k1dqeCzVssRLpl</latexit> r⇤ = 1 exp( r⇤R0)
  7. 実装: Final epidemic size 10/20 • Final epidemic sizeは左図の緑⾊の左の⽅の収束先の値 <latexit

    sha1_base64="y4Drxc9cmIJphOIsqsikfGkQF1o=">AAACkHicfVDbahRBEO0db3G9ZBMffWlchBjMMiOa5CFivDyIIEZxk8DOutT01kya9GXsrgkuw/yMX+Orvvk39mw2YBKxoJvDOVVdfU5WKukpjn93oitXr12/sXSze+v2nbvLvZXVfW8rJ3AorLLuMAOPShockiSFh6VD0JnCg+z4dasfnKDz0prPNCtxrKEwMpcCKFCT3s6nScxT/FrJE55OcweiTjMkaOq0AK2h4c/5xpmgbLGWbLgv64+aOtzNpNePB/G8+GWQLECfLWpvstLZSadWVBoNCQXej5K4pHENjqRQ2HTTymMJ4hgKHAVoQKMf13ObDX8YmCnPrQvHEJ+zf0/UoL2f6Sx0aqAjf1FryX9po4ry7XEtTVkRGnG6KK8UJ8vbzPhUOhSkZgGAcDL8lYsjCJFQSPbclvZtslb5YOUNBosO3wfqQ4kOyLr1OgVXaGmaYLlIH7fof43w7awxoG435J1cTPcy2H8ySDYHzz4+7e++WiS/xO6zB2yNJWyL7bK3bI8NmWDf2Q/2k/2KVqPt6EX08rQ16ixm7rFzFb37A4hZykI=</latexit> R0 ⌘ = log(1 r⇤) r⇤ より、今R0 =4.2くらい 98.4%くらいの⼈がこの感染症に最終的にはかかる