Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How to Scale Postgres - Automation, Tuning & Sh...
Search
Lukas Fittl
June 23, 2020
Technology
0
660
How to Scale Postgres - Automation, Tuning & Sharding
Talk at Postgres Vision 2020
Lukas Fittl
June 23, 2020
Tweet
Share
More Decks by Lukas Fittl
See All by Lukas Fittl
What's Missing for Postgres Monitoring
lfittl
0
250
A Map For Monitoring PostgreSQL
lfittl
2
390
Monitoring Postgres at Scale
lfittl
1
450
Monitoring PostgreSQL at Scale
lfittl
4
270
Postgres Performance for App Developers
lfittl
2
310
GraphQL ❤ PostgreSQL -- P.S. aka BeatQL
lfittl
1
600
Hacking PostgreSQL to Gain SQL Parsing Superpowers
lfittl
1
600
PostgreSQL at a Web Startup
lfittl
3
600
Advanced pg_stat_statements: Filtering, Regression Testing & more
lfittl
4
790
Other Decks in Technology
See All in Technology
業務のトイルをバスターせよ 〜AI時代の生存戦略〜
staka121
PRO
2
120
モダンデータスタック (MDS) の話とデータ分析が起こすビジネス変革
sutotakeshi
0
470
大企業でもできる!ボトムアップで拡大させるプラットフォームの作り方
findy_eventslides
1
750
re:Invent 2025 ふりかえり 生成AI版
takaakikakei
1
200
AIと二人三脚で育てた、個人開発アプリグロース術
zozotech
PRO
1
720
チーリンについて
hirotomotaguchi
6
1.9k
MapKitとオープンデータで実現する地図情報の拡張と可視化
zozotech
PRO
1
140
regrowth_tokyo_2025_securityagent
hiashisan
0
230
AWS Security Agentの紹介/introducing-aws-security-agent
tomoki10
0
190
Playwrightのソースコードに見る、自動テストを自動で書く技術
yusukeiwaki
13
5.3k
Kiro Autonomous AgentとKiro Powers の紹介 / kiro-autonomous-agent-and-powers
tomoki10
0
440
LLM-Readyなデータ基盤を高速に構築するためのアジャイルデータモデリングの実例
kashira
0
240
Featured
See All Featured
Bash Introduction
62gerente
615
210k
Making the Leap to Tech Lead
cromwellryan
135
9.7k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Visualization
eitanlees
150
16k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
How to train your dragon (web standard)
notwaldorf
97
6.4k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
710
Automating Front-end Workflow
addyosmani
1371
200k
Building an army of robots
kneath
306
46k
We Have a Design System, Now What?
morganepeng
54
7.9k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
970
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Transcript
@LukasFittl How to Scale Postgres: Automation, Tuning & Sharding
@LukasFittl
Scaling Postgres
Scaling Postgres
Automation Handling 100s of database servers
Consistency is key
Infrastructure as Code
Postgres Infrastructure as Code
Demo: Managing Configuration using Terraform
Cloud PaaS Synchronized Configuration Terraform
Cloud PaaS Synchronized Configuration Terraform Access Control (Roles, pg_hba.conf) Terraform
Cloud PaaS Synchronized Configuration Terraform Parameter Groups Access Control (Roles,
pg_hba.conf) Roles: Terraform HBA: Built-in Automatic Failover (for HA & Planned Updates) Built-in
Cloud PaaS Synchronized Configuration Terraform Parameter Groups Access Control (Roles,
pg_hba.conf) Roles: Terraform HBA: Built-in Automatic Failover (for HA & Planned Updates) Built-in Read Replicas Built-in
Cloud PaaS Synchronized Configuration Terraform Parameter Groups Access Control (Roles,
pg_hba.conf) Roles: Terraform HBA: Built-in Automatic Failover (for HA & Planned Updates) Built-in Read Replicas Built-in Backups Built-in
Cloud PaaS Synchronized Configuration Terraform Parameter Groups Access Control (Roles,
pg_hba.conf) Roles: Terraform HBA: Built-in Automatic Failover (for HA & Planned Updates) Built-in Read Replicas Built-in Backups Built-in Connection Pooling Manual Setup
Cloud PaaS Self-Managed VM Synchronized Configuration Terraform Parameter Groups ?
Access Control (Roles, pg_hba.conf) Roles: Terraform HBA: Built-in ? Automatic Failover (for HA & Planned Updates) Built-in ? Read Replicas Built-in ? Backups Built-in ? Connection Pooling Manual Setup ?
Cloud PaaS Self-Managed VM Synchronized Configuration Terraform Parameter Groups ?
Access Control (Roles, pg_hba.conf) Roles: Terraform HBA: Built-in ? Automatic Failover (for HA & Planned Updates) Built-in pg_auto_failover Read Replicas Built-in ? Backups Built-in ? Connection Pooling Manual Setup ?
pg_auto_failover: Simple, automated failover
pg_auto_failover
Demo: Postgres HA using pg_auto_failover
Tuning Making The Most Of Your Database Server
work_mem tuning
Out Of Memory vs Operations Spill To Disk
Temporary Files Written pg_stat_statements.temp_blks_written pg_stat_database.temp_bytes
Temporary Files Written (Per Query) log_temp_files = 0 Jan 20
09:18:58pm PST 28847 LOG: temporary file: path "base/pgsql_ pgsql_tmp28847.9", size 50658332 Jan 20 09:18:58pm PST 28847 STATEMENT: WITH servers AS ( SELECT …
When Sorts Spill To Disk, Increase work_mem However, be aware
of OOMs!
When you get a lot of Out of Memory Errors
Reduce work_mem!
VACUUM
autovacuum => SELECT pid, query FROM pg_stat_activity WHERE query LIKE
'autovacuum: %'; 10469 | autovacuum: VACUUM ANALYZE public.schema_columns 12848 | autovacuum: VACUUM public.replication_follower_stats 28626 | autovacuum: VACUUM public.schema_index_stats | (to prevent wraparound) (3 rows) pg_stat_activity
autovacuum pg_stat_progress_vacuum relid: OID of the table phase: current VACUUM
phase heap_blks_total: Heap Blocks Total heap_blks_scanned: Heap Blocks Scanned heap_blks_vacuumed: Heap Blocks Vacuumed …
Reduce autovacuum_vacuum_cost_delay To Increase VACUUM Speed 80 MB/s 8 MB/s
(20ms) (2ms) PG 12+ Older PG Default OS / Disk Reads
Use Table Partitioning For Append-Only + Delete Workloads (e.g. Timeseries)
Checkpoints
Data Directory WAL WAL WAL Buffer Cache Checkpointer WAL Checkpoints
Are Important For I/O Tuning
16688 LOG: checkpoint starting: xlog xlog = WAL exceeded max_wal_size,
checkpoint has to happen quickly time = checkpoint_timeout reached, checkpoint impact spread over time
Checkpoint Statistics pg_stat_bgwriter checkpoints_timed: # of scheduled checkpoints checkpoints_req: #
of requested checkpoints 1. Time Between Checkpoints 2. % of Timed Checkpoints
Increase max_wal_size / Reduce checkpoint_timeout To Have More Timed Checkpoints
(but be careful with recovery times)
Tune checkpoint_completion_target To Control I/O Impact of Timed Checkpoints (Often
0.9 is a good value, but depends on I/O Subsystem & Workload)
Demo: Postgres 13 WAL Monitoring
Sharding Scaling Beyond The Limits of a Single Server
Citus: Extension for Sharding Postgres
Select from table Coordinator Table metadata Select from table_1001 Select
from table_1003 Select from table_1002 Select from table_1004 Data node N Data node 2 Data node 1 Table_1001 Table_1003 Table_1002 Table_1004 Each node PostgreSQL with Citus installed 1 shard = 1 PostgreSQL table Sharding data across multiple nodes
Demo: Hyperscale (Citus) on Kubernetes with Azure Arc
Thank you!
[email protected]
@LukasFittl