Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Deep Learning Image Manipulation
Search
Leszek Rybicki
May 18, 2017
Research
2
210
Deep Learning Image Manipulation
Illustrated guide to some image manipulation methods, with demonstration.
Leszek Rybicki
May 18, 2017
Tweet
Share
More Decks by Leszek Rybicki
See All by Leszek Rybicki
Let's talk about Fakes
lunardog
0
140
How to Patch Image Classifiers
lunardog
0
2.2k
Towards Realistic Predictors - EN
lunardog
0
2.1k
Towards Realistic Predictors
lunardog
1
2.2k
Deep Learning Hot Dog Detector
lunardog
0
270
Finding beans in burgers: paper reading notes
lunardog
0
1.6k
Kelner: Serve Your Models
lunardog
0
120
Image Analysis at Cookpad
lunardog
1
1.8k
Kelner: serve your models
lunardog
1
390
Other Decks in Research
See All in Research
Unsupervised Domain Adaptation Architecture Search with Self-Training for Land Cover Mapping
satai
3
180
[CV勉強会@関東 CVPR2025] VLM自動運転model S4-Driver
shinkyoto
2
510
When Submarine Cables Go Dark: Examining the Web Services Resilience Amid Global Internet Disruptions
irvin
0
320
20250605_新交通システム推進議連_熊本都市圏「車1割削減、渋滞半減、公共交通2倍」から考える地方都市交通政策
trafficbrain
0
830
時系列データに対する解釈可能な 決定木クラスタリング
mickey_kubo
2
1k
引力・斥力を制御可能なランダム部分集合の確率分布
wasyro
0
260
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
130
EOGS: Gaussian Splatting for Efficient Satellite Image Photogrammetry
satai
4
620
MetaEarth: A Generative Foundation Model for Global-Scale Remote Sensing Image Generation
satai
4
290
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
280
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
62
30k
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
260
Featured
See All Featured
Embracing the Ebb and Flow
colly
88
4.8k
Java REST API Framework Comparison - PWX 2021
mraible
33
8.8k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Into the Great Unknown - MozCon
thekraken
40
2.1k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
45
2.5k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.9k
Building Applications with DynamoDB
mza
96
6.6k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Building an army of robots
kneath
306
46k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Scaling GitHub
holman
463
140k
Transcript
%FFQ-FBSOJOH *NBHF.BOJQVMBUJPO BOJMMVTUSBUFEHVJEF .-,JUDIFO
"CPVUNF w -FT[FL3ZCJDLJ w HJUIVC!MVOBSEPH w CPSOJO1PMBOE w .-3FTFBSDIFSBU$PPLQBE w
*MJLFOBUUP
DBSFFST!DPPLQBEDPN 8BOUUPXPSLXJUIVT
$POWPMVUJPOBM "SJUINFUJD OCIKE
*NBHFTUPGFBUVSFT
$POWPMVUJPO http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html input output input output kernel
4USJEF http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html 2px 2px 2px 2px
1BEEJOH http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html 2px 2px
4USJEF QBEEJOH http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html
5SBOTQPTFE http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html simulated here with padding also called “deconvolution” “fractional
stride”
%PXOTBNQMJOH features or small resolution image convolutional layer or layers
RGB image input output
6QTBNQMJOH upsampling CNN layer or layers RGB image features or
small resolution image input output
&ODPEFS%FDPEFS D E image in Decoder Encoder image out feature
space
'VMMZ$POOFDUFE $MBTTJpFS approve loan reject class data or features also
called “Dense” layer
$//$MBTTJpFS food person plant other AlexNet, LeNet, VGG…
'PPE/FU ™ food not food
@teenybiscuit
None
@teenybiscuit
@teenybiscuit
@teenybiscuit
@teenybiscuit
@teenybiscuit
(FOFSBUJWF "EWFSTBSJBM /FUXPSLT
Generator Discriminator https://speakerdeck.com/lunardog/deep-convolutional-voight-kampf-test “Couple of bots studying for the Turing
Test”
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec
Radford, Luke Metz, Soumith Chintala (Submitted on 19 Nov 2015 (v1), last revised 7 Jan 2016 (this version, v2)) https://arxiv.org/abs/1511.06434
Generator Discriminator G MPPLTMFHJU UPUBMMZTIPQQFE D
G SFBM GBLF D D(G(noise)) ˠ real (FOFSBUPSUSBJOJOH Discriminator acts
as the teacher
G SFBM GBLF D SFBM GBLF D D(G(noise)) ˠ fake
D(photo) ˠ real %JTDSJNJOBUPSUSBJOJOH Generator provides negative examples
None
https://www.youtube.com/watch?v=rs3aI7bACGc ©Yota Ishida
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec
Radford, Luke Metz, Soumith Chintala (Submitted on 19 Nov 2015 (v1), last revised 7 Jan 2016 (this version, v2)) https://arxiv.org/abs/1511.06434
$POEJUJPOBM ("/T
G NBMF GFNBMF DIJME FMEFSMZ G(noise | conditions) $POEJUJPOBM(FOFSBUPS
SJHIU XSPOH NBMF GFNBMF DIJME FMEFSMZ D $POEJUJPOBM%JTDSJNJOBUPS
SJHIU XSPOH NBMF GFNBMF DIJME FMEFSMZ D SJHIU XSPOH NBMF
GFNBMF DIJME FMEFSMZ SJHIU XSPOH NBMF GFNBMF DIJME FMEFSMZ D D
SJHIU XSPOH D $POEJUJPOBM("/ https://arxiv.org/abs/1411.1784 Conditional Generative Adversarial Nets Mehdi
Mirza, Simon Osindero (Submitted on 6 Nov 2014) Generator Discriminator NBMF GFNBMF DIJME FMEFSMZ G NBMF GFNBMF DIJME FMEFSMZ same condition
G NBMF GFNBMF DIJME FMEFSMZ SJHIU XSPOH NBMF GFNBMF DIJME
FMEFSMZ D $POEJUJPOBM("/ Discriminator Generator
https://www.faceapp.com/ Disclaimer: FaceApp authors don’t disclose their method. This is
only my guess. It may have nothing to do with GANs. original
original https://www.faceapp.com/
https://www.faceapp.com/ original
"SUJTUJD4UZMF5SBOTGFS Improved!
https://prisma-ai.com/
https://prisma-ai.com/ https://prisma-ai.com/
https://prisma-ai.com/ https://prisma-ai.com/
https://prisma-ai.com/ https://prisma-ai.com/
https://arxiv.org/abs/1603.08155 transformation network loss network Gram matrices in feature space
pre-trained content image style image
“Gram matrices in feature space” https://en.wikipedia.org/wiki/Gramian_matrix
https://www.youtube.com/watch?v=xVJwwWQlQ1o
$ZDMF("/
https://github.com/junyanz/CycleGAN
https://github.com/junyanz/CycleGAN
https://github.com/junyanz/CycleGAN
(FOFSBUPS transformation network https://arxiv.org/abs/1603.08155
GBLF IPSTF GBLF IPSTF … %JTDSJNJOBUPS fully convolutional judges patches
of the input image https://arxiv.org/abs/1603.08155
"EWFSTBSJBM-PTT X F G Y GBLF [FCSB GBLF [FCSB …
GBLF IPSTF GBLF IPSTF … X(F(horse)) ˠ classify as zebra Y(F(zebra)) ˠ classify as horse
$ZDMF-PTT G F G(F(image))ˠ the same image F G F(G(image))ˠ
the same image
https://www.youtube.com/watch?v=9reHvktowLY
5IF&OE