Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Deep Learning Image Manipulation
Search
Leszek Rybicki
May 18, 2017
Research
2
220
Deep Learning Image Manipulation
Illustrated guide to some image manipulation methods, with demonstration.
Leszek Rybicki
May 18, 2017
Tweet
Share
More Decks by Leszek Rybicki
See All by Leszek Rybicki
Let's talk about Fakes
lunardog
0
140
How to Patch Image Classifiers
lunardog
0
2.4k
Towards Realistic Predictors - EN
lunardog
0
2.3k
Towards Realistic Predictors
lunardog
1
2.3k
Deep Learning Hot Dog Detector
lunardog
0
280
Finding beans in burgers: paper reading notes
lunardog
0
1.7k
Kelner: Serve Your Models
lunardog
0
120
Image Analysis at Cookpad
lunardog
1
1.8k
Kelner: serve your models
lunardog
1
390
Other Decks in Research
See All in Research
Language Models Are Implicitly Continuous
eumesy
PRO
0
340
GPUを利用したStein Particle Filterによる点群6自由度モンテカルロSLAM
takuminakao
0
620
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
1k
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
440
教師あり学習と強化学習で作る 最強の数学特化LLM
analokmaus
2
650
MIRU2025 チュートリアル講演「ロボット基盤モデルの最前線」
haraduka
15
10k
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
270
機械学習と数理最適化の融合 (MOAI) による革新
mickey_kubo
1
430
SREのためのテレメトリー技術の探究 / Telemetry for SRE
yuukit
12
2.3k
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
130
Panopticon: Advancing Any-Sensor Foundation Models for Earth Observation
satai
3
380
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
kurita
1
290
Featured
See All Featured
We Have a Design System, Now What?
morganepeng
54
7.9k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.3k
Become a Pro
speakerdeck
PRO
30
5.7k
Building an army of robots
kneath
306
46k
Typedesign – Prime Four
hannesfritz
42
2.9k
Producing Creativity
orderedlist
PRO
348
40k
Faster Mobile Websites
deanohume
310
31k
Music & Morning Musume
bryan
46
7k
How GitHub (no longer) Works
holman
316
140k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
Fireside Chat
paigeccino
41
3.7k
Transcript
%FFQ-FBSOJOH *NBHF.BOJQVMBUJPO BOJMMVTUSBUFEHVJEF .-,JUDIFO
"CPVUNF w -FT[FL3ZCJDLJ w HJUIVC!MVOBSEPH w CPSOJO1PMBOE w .-3FTFBSDIFSBU$PPLQBE w
*MJLFOBUUP
DBSFFST!DPPLQBEDPN 8BOUUPXPSLXJUIVT
$POWPMVUJPOBM "SJUINFUJD OCIKE
*NBHFTUPGFBUVSFT
$POWPMVUJPO http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html input output input output kernel
4USJEF http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html 2px 2px 2px 2px
1BEEJOH http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html 2px 2px
4USJEF QBEEJOH http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html
5SBOTQPTFE http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html simulated here with padding also called “deconvolution” “fractional
stride”
%PXOTBNQMJOH features or small resolution image convolutional layer or layers
RGB image input output
6QTBNQMJOH upsampling CNN layer or layers RGB image features or
small resolution image input output
&ODPEFS%FDPEFS D E image in Decoder Encoder image out feature
space
'VMMZ$POOFDUFE $MBTTJpFS approve loan reject class data or features also
called “Dense” layer
$//$MBTTJpFS food person plant other AlexNet, LeNet, VGG…
'PPE/FU ™ food not food
@teenybiscuit
None
@teenybiscuit
@teenybiscuit
@teenybiscuit
@teenybiscuit
@teenybiscuit
(FOFSBUJWF "EWFSTBSJBM /FUXPSLT
Generator Discriminator https://speakerdeck.com/lunardog/deep-convolutional-voight-kampf-test “Couple of bots studying for the Turing
Test”
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec
Radford, Luke Metz, Soumith Chintala (Submitted on 19 Nov 2015 (v1), last revised 7 Jan 2016 (this version, v2)) https://arxiv.org/abs/1511.06434
Generator Discriminator G MPPLTMFHJU UPUBMMZTIPQQFE D
G SFBM GBLF D D(G(noise)) ˠ real (FOFSBUPSUSBJOJOH Discriminator acts
as the teacher
G SFBM GBLF D SFBM GBLF D D(G(noise)) ˠ fake
D(photo) ˠ real %JTDSJNJOBUPSUSBJOJOH Generator provides negative examples
None
https://www.youtube.com/watch?v=rs3aI7bACGc ©Yota Ishida
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec
Radford, Luke Metz, Soumith Chintala (Submitted on 19 Nov 2015 (v1), last revised 7 Jan 2016 (this version, v2)) https://arxiv.org/abs/1511.06434
$POEJUJPOBM ("/T
G NBMF GFNBMF DIJME FMEFSMZ G(noise | conditions) $POEJUJPOBM(FOFSBUPS
SJHIU XSPOH NBMF GFNBMF DIJME FMEFSMZ D $POEJUJPOBM%JTDSJNJOBUPS
SJHIU XSPOH NBMF GFNBMF DIJME FMEFSMZ D SJHIU XSPOH NBMF
GFNBMF DIJME FMEFSMZ SJHIU XSPOH NBMF GFNBMF DIJME FMEFSMZ D D
SJHIU XSPOH D $POEJUJPOBM("/ https://arxiv.org/abs/1411.1784 Conditional Generative Adversarial Nets Mehdi
Mirza, Simon Osindero (Submitted on 6 Nov 2014) Generator Discriminator NBMF GFNBMF DIJME FMEFSMZ G NBMF GFNBMF DIJME FMEFSMZ same condition
G NBMF GFNBMF DIJME FMEFSMZ SJHIU XSPOH NBMF GFNBMF DIJME
FMEFSMZ D $POEJUJPOBM("/ Discriminator Generator
https://www.faceapp.com/ Disclaimer: FaceApp authors don’t disclose their method. This is
only my guess. It may have nothing to do with GANs. original
original https://www.faceapp.com/
https://www.faceapp.com/ original
"SUJTUJD4UZMF5SBOTGFS Improved!
https://prisma-ai.com/
https://prisma-ai.com/ https://prisma-ai.com/
https://prisma-ai.com/ https://prisma-ai.com/
https://prisma-ai.com/ https://prisma-ai.com/
https://arxiv.org/abs/1603.08155 transformation network loss network Gram matrices in feature space
pre-trained content image style image
“Gram matrices in feature space” https://en.wikipedia.org/wiki/Gramian_matrix
https://www.youtube.com/watch?v=xVJwwWQlQ1o
$ZDMF("/
https://github.com/junyanz/CycleGAN
https://github.com/junyanz/CycleGAN
https://github.com/junyanz/CycleGAN
(FOFSBUPS transformation network https://arxiv.org/abs/1603.08155
GBLF IPSTF GBLF IPSTF … %JTDSJNJOBUPS fully convolutional judges patches
of the input image https://arxiv.org/abs/1603.08155
"EWFSTBSJBM-PTT X F G Y GBLF [FCSB GBLF [FCSB …
GBLF IPSTF GBLF IPSTF … X(F(horse)) ˠ classify as zebra Y(F(zebra)) ˠ classify as horse
$ZDMF-PTT G F G(F(image))ˠ the same image F G F(G(image))ˠ
the same image
https://www.youtube.com/watch?v=9reHvktowLY
5IF&OE