$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Deep Learning Image Manipulation
Search
Leszek Rybicki
May 18, 2017
Research
2
220
Deep Learning Image Manipulation
Illustrated guide to some image manipulation methods, with demonstration.
Leszek Rybicki
May 18, 2017
Tweet
Share
More Decks by Leszek Rybicki
See All by Leszek Rybicki
Let's talk about Fakes
lunardog
0
150
How to Patch Image Classifiers
lunardog
0
2.4k
Towards Realistic Predictors - EN
lunardog
0
2.3k
Towards Realistic Predictors
lunardog
1
2.3k
Deep Learning Hot Dog Detector
lunardog
0
280
Finding beans in burgers: paper reading notes
lunardog
0
1.7k
Kelner: Serve Your Models
lunardog
0
130
Image Analysis at Cookpad
lunardog
1
1.8k
Kelner: serve your models
lunardog
1
400
Other Decks in Research
See All in Research
LLM-Assisted Semantic Guidance for Sparsely Annotated Remote Sensing Object Detection
satai
3
210
論文紹介: ReGenesis: LLMs can Grow into Reasoning Generalists via Self-Improvement
hisaokatsumi
0
150
湯村研究室の紹介2025 / yumulab2025
yumulab
0
270
Unsupervised Domain Adaptation Architecture Search with Self-Training for Land Cover Mapping
satai
3
450
Language Models Are Implicitly Continuous
eumesy
PRO
0
360
生成AI による論文執筆サポート・ワークショップ ─ サーベイ/リサーチクエスチョン編 / Workshop on AI-Assisted Paper Writing Support: Survey/Research Question Edition
ks91
PRO
0
130
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
1.1k
POI: Proof of Identity
katsyoshi
0
120
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
1.1k
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.2k
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
65
35k
"主観で終わらせない"定性データ活用 ― プロダクトディスカバリーを加速させるインサイトマネジメント / Utilizing qualitative data that "doesn't end with subjectivity" - Insight management that accelerates product discovery
kaminashi
15
17k
Featured
See All Featured
How to make the Groovebox
asonas
2
1.8k
Accessibility Awareness
sabderemane
0
24
KATA
mclloyd
PRO
33
15k
Building an army of robots
kneath
306
46k
The Curious Case for Waylosing
cassininazir
0
190
Writing Fast Ruby
sferik
630
62k
Redefining SEO in the New Era of Traffic Generation
szymonslowik
1
170
Building Adaptive Systems
keathley
44
2.9k
Paper Plane (Part 1)
katiecoart
PRO
0
2.1k
Building Applications with DynamoDB
mza
96
6.8k
The SEO Collaboration Effect
kristinabergwall1
0
310
SEO for Brand Visibility & Recognition
aleyda
0
4.1k
Transcript
%FFQ-FBSOJOH *NBHF.BOJQVMBUJPO BOJMMVTUSBUFEHVJEF .-,JUDIFO
"CPVUNF w -FT[FL3ZCJDLJ w HJUIVC!MVOBSEPH w CPSOJO1PMBOE w .-3FTFBSDIFSBU$PPLQBE w
*MJLFOBUUP
DBSFFST!DPPLQBEDPN 8BOUUPXPSLXJUIVT
$POWPMVUJPOBM "SJUINFUJD OCIKE
*NBHFTUPGFBUVSFT
$POWPMVUJPO http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html input output input output kernel
4USJEF http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html 2px 2px 2px 2px
1BEEJOH http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html 2px 2px
4USJEF QBEEJOH http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html
5SBOTQPTFE http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html simulated here with padding also called “deconvolution” “fractional
stride”
%PXOTBNQMJOH features or small resolution image convolutional layer or layers
RGB image input output
6QTBNQMJOH upsampling CNN layer or layers RGB image features or
small resolution image input output
&ODPEFS%FDPEFS D E image in Decoder Encoder image out feature
space
'VMMZ$POOFDUFE $MBTTJpFS approve loan reject class data or features also
called “Dense” layer
$//$MBTTJpFS food person plant other AlexNet, LeNet, VGG…
'PPE/FU ™ food not food
@teenybiscuit
None
@teenybiscuit
@teenybiscuit
@teenybiscuit
@teenybiscuit
@teenybiscuit
(FOFSBUJWF "EWFSTBSJBM /FUXPSLT
Generator Discriminator https://speakerdeck.com/lunardog/deep-convolutional-voight-kampf-test “Couple of bots studying for the Turing
Test”
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec
Radford, Luke Metz, Soumith Chintala (Submitted on 19 Nov 2015 (v1), last revised 7 Jan 2016 (this version, v2)) https://arxiv.org/abs/1511.06434
Generator Discriminator G MPPLTMFHJU UPUBMMZTIPQQFE D
G SFBM GBLF D D(G(noise)) ˠ real (FOFSBUPSUSBJOJOH Discriminator acts
as the teacher
G SFBM GBLF D SFBM GBLF D D(G(noise)) ˠ fake
D(photo) ˠ real %JTDSJNJOBUPSUSBJOJOH Generator provides negative examples
None
https://www.youtube.com/watch?v=rs3aI7bACGc ©Yota Ishida
Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec
Radford, Luke Metz, Soumith Chintala (Submitted on 19 Nov 2015 (v1), last revised 7 Jan 2016 (this version, v2)) https://arxiv.org/abs/1511.06434
$POEJUJPOBM ("/T
G NBMF GFNBMF DIJME FMEFSMZ G(noise | conditions) $POEJUJPOBM(FOFSBUPS
SJHIU XSPOH NBMF GFNBMF DIJME FMEFSMZ D $POEJUJPOBM%JTDSJNJOBUPS
SJHIU XSPOH NBMF GFNBMF DIJME FMEFSMZ D SJHIU XSPOH NBMF
GFNBMF DIJME FMEFSMZ SJHIU XSPOH NBMF GFNBMF DIJME FMEFSMZ D D
SJHIU XSPOH D $POEJUJPOBM("/ https://arxiv.org/abs/1411.1784 Conditional Generative Adversarial Nets Mehdi
Mirza, Simon Osindero (Submitted on 6 Nov 2014) Generator Discriminator NBMF GFNBMF DIJME FMEFSMZ G NBMF GFNBMF DIJME FMEFSMZ same condition
G NBMF GFNBMF DIJME FMEFSMZ SJHIU XSPOH NBMF GFNBMF DIJME
FMEFSMZ D $POEJUJPOBM("/ Discriminator Generator
https://www.faceapp.com/ Disclaimer: FaceApp authors don’t disclose their method. This is
only my guess. It may have nothing to do with GANs. original
original https://www.faceapp.com/
https://www.faceapp.com/ original
"SUJTUJD4UZMF5SBOTGFS Improved!
https://prisma-ai.com/
https://prisma-ai.com/ https://prisma-ai.com/
https://prisma-ai.com/ https://prisma-ai.com/
https://prisma-ai.com/ https://prisma-ai.com/
https://arxiv.org/abs/1603.08155 transformation network loss network Gram matrices in feature space
pre-trained content image style image
“Gram matrices in feature space” https://en.wikipedia.org/wiki/Gramian_matrix
https://www.youtube.com/watch?v=xVJwwWQlQ1o
$ZDMF("/
https://github.com/junyanz/CycleGAN
https://github.com/junyanz/CycleGAN
https://github.com/junyanz/CycleGAN
(FOFSBUPS transformation network https://arxiv.org/abs/1603.08155
GBLF IPSTF GBLF IPSTF … %JTDSJNJOBUPS fully convolutional judges patches
of the input image https://arxiv.org/abs/1603.08155
"EWFSTBSJBM-PTT X F G Y GBLF [FCSB GBLF [FCSB …
GBLF IPSTF GBLF IPSTF … X(F(horse)) ˠ classify as zebra Y(F(zebra)) ˠ classify as horse
$ZDMF-PTT G F G(F(image))ˠ the same image F G F(G(image))ˠ
the same image
https://www.youtube.com/watch?v=9reHvktowLY
5IF&OE