Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
力学の基本原理を用いたオーバハンドパスにおける合理的ルール構築の検討
Search
MinchiMinchi
August 11, 2022
Technology
1
350
力学の基本原理を用いたオーバハンドパス における合理的ルール構築の検討
MinchiMinchi
August 11, 2022
Tweet
Share
More Decks by MinchiMinchi
See All by MinchiMinchi
大円距離の式の導出
minchiminchi
0
20
戦術面のトレーニングで感じてほしいこと(何故,協調活動が創出するのか?)
minchiminchi
0
58
戦術面のトレーニングで感じてほしいこと(何故,協調活動が創出するのか?)
minchiminchi
1
85
オフ・ザ・ボールの選手位置に関するデータ記録方法の検討
minchiminchi
0
28
ジャンプ動作時の床反力発生に関する力学的考察
minchiminchi
0
590
ラインジャッジにおける人間の認知限界の検討
minchiminchi
0
400
身体を用いたボールヒットにおける撃心についての検討
minchiminchi
1
350
バレーボールにおけるスパイク練習のための ブロックマシンの機構設計
minchiminchi
0
46
バレーボールにおけるスパイク練習のための ブロックマシンの機構設計
minchiminchi
0
40
Other Decks in Technology
See All in Technology
カメラを用いた店内計測におけるオプトインの仕組みの実現 / ai-optin-camera
cyberagentdevelopers
PRO
1
120
生成AIと知識グラフの相互利用に基づく文書解析
koujikozaki
1
140
オニオンアーキテクチャで実現した 本質課題を解決する インフラ移行の実例
hryushm
14
3k
大規模データ基盤チームのオンプレTiDB運用への挑戦 / dpu-tidb
cyberagentdevelopers
PRO
1
110
事業者間調整の行間を読む 調整の具体事例
sugiim
0
1.4k
Forget efficiency – Become more productive without the stress
ufried
0
110
ネット広告に未来はあるか?「3rd Party Cookie廃止とPrivacy Sandboxの効果検証の裏側」 / third-party-cookie-privacy
cyberagentdevelopers
PRO
1
130
端末が簡単にリモートから操作されるデモを通じて ソフトウェアサプライチェーン攻撃対策の重要性を理解しよう
kitaji0306
0
170
独自ツール開発でスタジオ撮影をDX!「VLS(Virtual LED Studio)」 / dx-studio-vls
cyberagentdevelopers
PRO
1
180
話題のGraphRAG、その可能性と課題を理解する
hide212131
4
1.5k
来年もre:Invent2024 に行きたいあなたへ - “集中”と“つながり”で楽しむ -
ny7760
0
460
Java x Spring Boot Warm up
kazu_kichi_67
2
490
Featured
See All Featured
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
250
21k
Raft: Consensus for Rubyists
vanstee
136
6.6k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
191
16k
Making Projects Easy
brettharned
115
5.9k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
131
33k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5k
[RailsConf 2023] Rails as a piece of cake
palkan
51
4.9k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
43
6.6k
For a Future-Friendly Web
brad_frost
175
9.4k
Java REST API Framework Comparison - PWX 2021
mraible
PRO
28
7.9k
YesSQL, Process and Tooling at Scale
rocio
167
14k
Into the Great Unknown - MozCon
thekraken
31
1.5k
Transcript
力学の基本原理を用いたオーバハンドパス における合理的ルール構築の検討 三村泰成 鶴岡工業高等専門学校 Discussion of rational rule construction in
overhand pass using basic principle of mechanics 1
はじめに バレーボール(Volleyball)という競技とは?: 「ボールを地面に接地させずに打ち返す」という競技 オーバーハンドパス 「打ち返す」という現象ではない?
ルールでも明示されていない? (両手でボールヒットする?) • 「オーバーハンドパス」という力学現象を明らかにする • 力学を用いてルールを提案する. 2 • 『持っているかどうか』の判別をする方法がこれまでない. • カテゴリによっては,大きな大会で反則を取られていないケースもある. • チームはルールに従った行動をとるので,選手育成に悪影響がある. 問題 目的
ボールが跳ね返るとは? 3 ボールが床でバウンドして跳ね返る挙動(概念図) 離床 最大変形 着床
ボールが跳ね返るときの床反力 4 弾性反発 接地時間は約 0.01 秒 1m程度の高さから静かに落と して反発した時 ボールをたたきつけて反発した 時
弾性反発現象の分類 5 time time time (床で)跳ね返る 打ち返す 突く(先端で打ち返す) time ボール以外の弾性体で跳ね返す
弾き返す Volley ??
オーバーハンドパスとは? 6 • ボールの弾性反発? • 身体部位で弾き返す? • キャッチ&スロー? 日本バレーボール協会,コーチングバレーボール基礎編,大修館書店,(2017)
ラファエル・オリベイラ選手 https://youtu.be/71tGWES43gw http://www.volleyball-movies.net 7
アンダーハンドパス 8 ボールが変形している!! ボールの弾性反発 30fps 240fps 接触時間: 0.01667秒 (4/240)
オーバーハンドパス 9 30fps 240fps 接触時間: 0.0833秒 (20/240) “volley” ではないが,ここまでを Good
とするようである. ボールはほとんど変形しない!! 身体側で弾性反発を実現
高速キャッチ&スロー 10 30fps 240fps 肘が屈曲方向に動く 接触時間: 0.1542秒 (37/240) もはや弾性反発とは 言えない!!
高速キャッチ&スロー時の肘関節の屈曲 11 ボールタッチ後に肘関節が屈曲側に動く!
接触時間の比較(概算) 12 0.01秒~0.03秒 アンダーハンドパス オーバーハンドパス 高速キャッチ&スロー 0 0.1 0.2 キャッチ&スロー
0.08秒~0.14秒 0.12秒~0.2秒 0.2秒~ 時間での判別は困難!!
オーバーハンドパスの動作解析 13 (1)手の“ばね”を活かす (2)手の“ばね”を、身体の“力”で活かす Makita et al.,(2015), the
25th Congress of the Int. Society of Biomechanics, AS-0165. ボール接触時の床反力 縄田, 日本バレーボール学会 第21回大会2日目(2016/03/20) 肘の伸展
直上突きパス(できるだけ肘を固定) 14 30fps 240fps 接触時間: 0.1333秒 (32/240) “突いていると感じる” オーバーハンドパス. 実際には手首の弾性反発であり,ボールは
変形しない.
玉突き現象 15 手 体 幹 下肢 上腕 前腕 手首 縄田,
日本バレーボール学会 第21回大会2日目(2016/03/20) 突きパス オーバーハンドパス 手 体 幹 下肢 上腕 前腕 手首 肘 肩 肘関節は 伸展方向 に動く! 屈曲方向に動くと バネを活かせない!
突きパスの 3DCAD モデル 16 初期状態 バネの力で体幹を加速 ゴムの塊 炭素鋼
「床反力」と「手とボールの接触力」 17 バネ反力 両足 接触力(両手とボール) ボールの速度
オーバーハンドパスに関するルールの提案 18 オーバーハンドパスは,ボールではなく,身体の弾性エネルギを利 用した弾性反発である.弾性エネルギの蓄積&解放には,手指関 節に付随する筋腱複合体を主に利用する. 力学現象 オーバーハンドパスのとき,ボールが接触してから肘関 節は屈曲方向に動いてはならない. 屈曲方向に動いた場合は,「キャッチ」の反則と見なす. ルール
ボール接触時に肘関節は伸展しないと バネを活かすことができない!!
今後の課題 19 多くの選手を使った動画撮影,計測,検証. 信頼性を向上するには,信頼性のあるデータが必要である. 今回のルールを多くの審判が理解し,判定に利用できるかの 検証も必要である.
力学モデル: 「突きパス」を実現できるロボットの製作. オーバーハンドパスを実施できる「義手」,「装具」の製作. 人工物を用いて力学現象を実現できれば, 「動作の力学モデル」の信頼性が向上する n 数が必要
ジャンプ動作との比較 20 スクワットジャンプ ≒ ゆっくりキャッチ&スロー 垂直跳び(反動をつけてジャンプ)≒ 高速キャッチ&スロー
リバウンドジャンプ ≒ オーバーハンドパス 「オーバーハンドパス」という動作感覚は, バレーボール以外で経験することは少ないかもしれない.
まとめ 「オーバーハンドパス」という力学現象を明らかとした. 筋腱複合体を用いた「弾性反発」であることを示した. 3DCADモデルを製作し,力学モデルを検証した. 「肘の伸展・屈曲」に着目することで,「オーバーハンド・ パス」と「キャッチ&スロー」を判別できることを示した.
新たな「ルール」を提案した. 「力学現象」を示すことで,合理的なルールを 規定できることを明らかにした. 21
資料 22
動作を習得できる環境とは? マクロスケール: 身体全体で行われてる仕事 ミクロスケール: 各部位が行う仕事 メゾスケール: 簡略化したモデルが行う仕事 • 身体中で起きている現象? •
形,負荷のタイミング,...? • 外から教えることは不可能! 選手自身が感じて, 自分自身で学習できる 環境 を整備する. 過剰な関節 過剰なアクチュエータ 過剰に変形する • マルチスケールで観察が必要! • 何が起きてほしいのか? • 何を感じてほしいのか? 思考錯誤,試行錯誤 23