Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ラインジャッジにおける人間の認知限界の検討
Search
MinchiMinchi
October 21, 2021
Technology
0
600
ラインジャッジにおける人間の認知限界の検討
MinchiMinchi
October 21, 2021
Tweet
Share
More Decks by MinchiMinchi
See All by MinchiMinchi
放課後レクチャ(2022)
minchiminchi
0
100
何故,協調活動が創出するのか?
minchiminchi
0
220
大円距離の式の導出
minchiminchi
0
34
戦術面のトレーニングで感じてほしいこと(何故,協調活動が創出するのか?)
minchiminchi
0
69
戦術面のトレーニングで感じてほしいこと(何故,協調活動が創出するのか?)
minchiminchi
1
190
オフ・ザ・ボールの選手位置に関するデータ記録方法の検討
minchiminchi
0
44
ジャンプ動作時の床反力発生に関する力学的考察
minchiminchi
0
1.1k
力学の基本原理を用いたオーバハンドパスにおける合理的ルール構築の検討
minchiminchi
1
720
身体を用いたボールヒットにおける撃心についての検討
minchiminchi
1
450
Other Decks in Technology
See All in Technology
20250807 Applied Engineer Open House
sakana_ai
PRO
2
640
結局QUICで通信は速くなるの?
kota_yata
9
7.5k
Jamf Connect ZTNAとMDMで実現! 金融ベンチャーにおける「デバイストラスト」実例と軌跡 / Kyash Device Trust
rela1470
1
210
Amazon Bedrock AgentCore でプロモーション用動画生成エージェントを開発する
nasuvitz
6
290
AWSの最新サービスでAIエージェント構築に楽しく入門しよう
minorun365
PRO
9
520
[OCI Technical Deep Dive] OCIで生成AIを活用するためのソリューション解説(2025年8月5日開催)
oracle4engineer
PRO
0
130
僕たちが「開発しやすさ」を求め 模索し続けたアーキテクチャ #アーキテクチャ勉強会_findy
bengo4com
0
2.6k
JOAI発表資料 @ 関東kaggler会
joai_committee
1
140
サイボウズフロントエンドの横断活動から考える AI時代にできること
mugi_uno
3
1.2k
Oracle Exadata Database Service on Cloud@Customer X11M (ExaDB-C@C) サービス概要
oracle4engineer
PRO
2
6.4k
ABEMAにおける 生成AI活用の現在地 / The Current Status of Generative AI at ABEMA
dekatotoro
0
450
[OCI Technical Deep Dive] OracleのAI戦略(2025年8月5日開催)
oracle4engineer
PRO
1
250
Featured
See All Featured
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Bash Introduction
62gerente
614
210k
Designing for Performance
lara
610
69k
BBQ
matthewcrist
89
9.8k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
Done Done
chrislema
185
16k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Transcript
ラインジャッジにおける人間の認知限界の検討 Discussion of the human's recognition limit in the line
judge 三村泰成 鶴岡高専 日本バレーボール学会第24回大会 一般研究発表 2019年3月3日(日) 演題番号 15
【背景】 イン,アウトの判定 2 IN ライン 着床点 離床点 チャレンジ 画像 •
球速100km/h 以上 • 接地時間 10ms 程度 目視で判定が可能か?
【Facebook 上でのアンケート】 3 • 変形したボールは明確に見えない 109名 • 変形したボールが明確に見える 2名 本当に見えるのか?
【本研究の目的】 4 • 「ボールがバウンドする」という力学現象を明らかにする. • 認知限界を見極める方法を検討する 2枚の床反力計を用いた反応テスト 動画を用いた認知テスト 提案1 提案2
【力学現象】 ルール上のジャストイン 5 離床 最大変形 着床 (b) ジャストインの画像(着床点) (c) 着床の直後の画像
ライン (a) 着床の直前の画像 ボールがラインに触れたか?
【床反力計を用いた反応テスト】 6 - 測定方法 - 0.04秒 ボールのバウンド タップ 0.01秒 床半力計1
床半力計2 1mくらいの高さからボールを 落下させ,バウンドする瞬間に, 人間が鋼球でタップする.
【床反力計を用いた反応テスト】 7 - 測定結果 - 被験者1 被験者2 被験者3 min. 0.0013
0.0035 0.0020 max. 0.0341 0.0869 0.0621 ave. 0.0157 0.0407 0.0234 【単位: 秒】 人間の反応時間: 0.1 ~ 0.2秒 ボールのバウンドの瞬間を捉えるのは簡単ではないが, 反応時間よりも,精度良くタップできる. 認識は出来ている 見えてるかは?
1. 2. 3.分からない 【動画を用いた認知テスト】 8 -実験方法- ボールがライン近傍でバウンドする 60fps の動画を見せて, 問いに答えてもらう.
問1 インアウトの判定 1.イン 2.アウト 3.分からない 問2 ボールのバウンド時の状態 被験者: 鶴岡高専男子バレーボール部員10名
【動画を用いた認知テスト】 9 -結果 1 - イン アウト 分からない 球 変形
分からない 1 2 3 4 5 6
【動画を用いた認知テスト】 10 -結果 2 - 7 8 9 10 •
ギリギリのボール以外は,イン,アウ トの判定は認知できてそうである. • ボールの形状は,答えが分かれた. 形状は認知できてない?
【動画を用いた認知テスト】 • 民生用カメラの600fps,240fpsの動画を60fps に変換して利用してるので,画像が荒い. • ハイスピードカメラを用いて,問題と設問を工 夫する必要がある. • 本テストを洗練すれば,「審判のトレーニング 用認知テスト」を実現できる可能性もある.
11 - 考察 -
【ルールの提案】 -下死点で判定- 12 バウンドの下死点における中心がライン に触れているかを判定基準にする. 鉛直方向速度がゼロになる. 最大変形
【今後の予定】 • 業務用ハイスピードカメラによる撮影する. • 認知テストに適した動画の検討する. • 多数の被験者によるテストを実施する. • より詳細な変形挙動について確認する. •
個人の認知能力テストの検討する. 13
【まとめ】 • バレーボールがバウンドするという力学現 象を明らかとした. • 床半力計を用いて,人間の反応時間以下 の現象を認識できることを示した. • 60fpsの動画を用いてバウンド時の変形挙 動を認知しているかを確認できた.
• ボールのイン,アウトについてのルールを 提案した. 14
本研究はVolleyball Labのグループ研究の一環として行われたものです Volleyball Labとは バレーボールを客観的な根拠に基づき理解すること(Evidence-based Volleyball:EBV) を目的とするグループです. Volleyball Labメンバー ・浅野
暢介 ・大沢 仁 ・小田部 剛 ・垣花 実樹 ・川村 貴彦 ・北口 剛一 ・後藤 浩史 ・午坊 健司 ・佐藤彰太 ・佐藤 文彦 ・住田 達二 ・角力山 淳 ・高住翔 ・高橋 佑典 ・辻村 茉莉江 ・手川 勝太朗 ・中村 環 ・縄田 亮太 ・原 まなみ ・三上 岳 ・三村 泰成 ・百生 剣太 ・渡辺 寿規