Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
nekoIoTLT_SearchBlackObject
Search
NearMugi
October 21, 2020
Technology
1
640
nekoIoTLT_SearchBlackObject
NearMugi
October 21, 2020
Tweet
Share
More Decks by NearMugi
See All by NearMugi
nekoIoTLT_NearMugiLLM
nearmugi
0
370
nekoIoTLT_CatAndColorSensor
nearmugi
0
880
VisualProgramming_GoogleHome_LINE
nearmugi
1
520
EnebularMeetup_GoogleCalendar
nearmugi
0
280
nekoIoTLT_ToyAndVoiceAnalysis
nearmugi
0
380
nekoIoTLT_Demachi
nearmugi
0
400
nekoIoTLT_nekoDeeplearning
nearmugi
0
310
nekoIoTLT_nekoGohan
nearmugi
0
490
nekoIoTLT_Tsumetogi
nearmugi
1
700
Other Decks in Technology
See All in Technology
CSS、JSをHTMLテンプレートにまとめるフロントエンド戦略
d120145
0
280
Кто отправит outbox? Валентин Удальцов, автор канала Пых
lamodatech
0
330
Understanding_Thread_Tuning_for_Inference_Servers_of_Deep_Models.pdf
lycorptech_jp
PRO
0
110
TechLION vol.41~MySQLユーザ会のほうから来ました / techlion41_mysql
sakaik
0
180
AIの最新技術&テーマをつまんで紹介&フリートークするシリーズ #1 量子機械学習の入門
tkhresk
0
130
Navigation3でViewModelにデータを渡す方法
mikanichinose
0
220
How Community Opened Global Doors
hiroramos4
PRO
1
110
BigQuery Remote FunctionでLooker Studioをインタラクティブ化
cuebic9bic
3
260
CI/CD/IaC 久々に0から環境を作ったらこうなりました
kaz29
1
160
250627 関西Ruby会議08 前夜祭 RejectKaigi「DJ on Ruby Ver.0.1」
msykd
PRO
2
240
5min GuardDuty Extended Threat Detection EKS
takakuni
0
120
Observability в PHP без боли. Олег Мифле, тимлид Altenar
lamodatech
0
330
Featured
See All Featured
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Scaling GitHub
holman
459
140k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
700
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Agile that works and the tools we love
rasmusluckow
329
21k
VelocityConf: Rendering Performance Case Studies
addyosmani
330
24k
The Straight Up "How To Draw Better" Workshop
denniskardys
233
140k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
It's Worth the Effort
3n
185
28k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Transcript
トイレにある黒い物体を検知する 2020.10.21 夜開催! ねこIoTLT vol.4
自己紹介 NearMugi(ニアムギ) ねこ2匹飼っています。
ねこ紹介 ニア ・3月8日生まれ 11歳 ・もふもふでかわいい ・寒くなってきたのでさらにもふもふに
ねこ紹介 ムギ ・5月8日生まれ 8歳 ・黒猫でかわいい ・メーメー鳴く ・この子も少し毛が伸びた
イントロ みなさんのおうちでこんなこと ありませんか?
イントロ ねこがトイレの前でじっとしている…
イントロ トイレを見てみると中に 黒い物体が。
イントロ 「これを取ってくれ」と言わんばかりに 立っている。
イントロ すぐに取ってあげたい。 気づいてあげたい。
イントロ IoTで解決してみます。
1.トイレの様子を定期的に撮影 2.撮影した画像から黒い物体を検知 3.LINEで通知 大まかな手順
・30分ごとに撮影する ・部屋の明るさの変化を考慮する ・前回撮影した画像と似ている場合は通知しない ・機械学習は使わずに黒い物体を検知する 細かい仕様
1. ESP32+カメラで撮影、GoogleCloudStorage(GCS)へ画像をアップロードする 2. GCSに画像がアップロードされたイベントをトリガーに Cloud Pub/Subからメッセージが 送信される 3. Node-REDフロー内でCloud Pub/Subのメッセージを受信する
4. 画像をGCSから取得して解析する 5. 黒い物体を検知したとき、 LINEに通知する 手順の詳細 GoogleCloudStorage Cloud Pub/Sub GoogleComputeEngine メッセージ受信 画像取得 解析 通知
Cloud Pub/Subのメッセージを受信したら、 画像を取得する 手順の詳細(Node-REDフロー) 前回の画像をGCSから取得する 処理で使うパラメータを GCSから取得する 解析する ログと解析後の画像を GCSへ保存する
黒い物体を検知できたら LINEへ通知する
黒い物体の検知方法 黒い物体を検知するため OpenCVを使いました
黒い物体の検知方法 カメラで撮った画像 → 2値化(白黒)→白黒反転→輪郭を検出→面積を取得 → 面積の大きさから黒い物体があるか判断 画像から黒い物体を検知するまでの処理
黒い物体の検知方法 adaptiveThreshold : 画像をいい感じに2値化(白黒)する findContours : 黒い背景から白い物体の輪郭を検出する contourArea : 輪郭内の面積を取得する
OpenCVの関数
黒い物体の検知方法 -関数の説明(adaptiveThreshold) 元画像 void adaptiveThreshold(const Mat& src, Mat& dst, double maxValue,
int adaptiveMethod, int thresholdType, int blockSize, double C) 定数Cを変化させることで、白黒の範囲を調整できる C:10 白黒割合:0.29 C:20 白黒割合:0.23 C:30 白黒割合:0.18 C:40 白黒割合:0.13 C:60 白黒割合:0.06 C:70 白黒割合:0.04 C:80 白黒割合:0.03 C:90 白黒割合:0.02 C:50 白黒割合:0.09 ここらへんがちょうど良い
黒い物体の検知方法 -関数の説明(findContours, contourArea) void findContours(const Mat& image, vector<vector<Point> >& contours, int
mode, int method, Point offset=Point()) double contourArea(const Mat& contour) 輪郭を検出すると細かい部分も含まれてしまうので、面積の大きさから判断する 元画像に輪郭を検出したデータを合成したもの 面積の大きさにしきい値を設けたもの
通知 黒い物体を検知するとLINEに通知がきます
結果 検出結果をお見せしたいのですが、 黒い物体があれなので 今回は控えさせていただきます。 そこそこの検出具合でした。 明るさの調整が一番難しいです。
黒い物体の検知のポイント 白黒がはっきりしていると検知しやすいので、 大玉の猫砂がおすすめです
まとめ ・機械学習を使わなくてもある程度の検知が出来ると知りました。 照度センサーなどの補助があればもう少し精度が上がりそうです。 ・検知しやすくさせるため砂を平らにならしたり、砂の汚れ具合を 気にするようになりました。 以上となります。 ご清聴ありがとうございました。