Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
nekoIoTLT_SearchBlackObject
Search
NearMugi
October 21, 2020
Technology
1
570
nekoIoTLT_SearchBlackObject
NearMugi
October 21, 2020
Tweet
Share
More Decks by NearMugi
See All by NearMugi
nekoIoTLT_NearMugiLLM
nearmugi
0
280
nekoIoTLT_CatAndColorSensor
nearmugi
0
830
VisualProgramming_GoogleHome_LINE
nearmugi
1
460
EnebularMeetup_GoogleCalendar
nearmugi
0
220
nekoIoTLT_ToyAndVoiceAnalysis
nearmugi
0
340
nekoIoTLT_Demachi
nearmugi
0
360
nekoIoTLT_nekoDeeplearning
nearmugi
0
280
nekoIoTLT_nekoGohan
nearmugi
0
430
nekoIoTLT_Tsumetogi
nearmugi
1
650
Other Decks in Technology
See All in Technology
言葉は感情の近似値である。その感情と言葉の誤差を最小化しよう ~コミュニケーションにおけるアナログ/デジタル変換の課題に立ち向かう~
nktamago
0
250
OSTという文化を組織に根付かせてみた
sansantech
PRO
2
430
やってやろうじゃないかメカアジャイル! / Let's do it, mechanical agile!
psj59129
1
700
Road to Single Activity
yurihondo
2
240
Developer Experienceを向上させる基盤づくりの取り組み事例集
coconala_engineer
0
160
Technical Writing Meetup vol.35
soracom
PRO
2
130
とあるOSSを継続可能にするための取り組みについて / OSS Refactoring Process
bun913
1
220
DevRelの始め方
moongift
PRO
2
400
Creative UIs with Compose: DroidKaigi 2024
chrishorner
1
610
Agile in Automotive Industry, puzzles and lights.
hiranabe
3
1.4k
Classmethod AI Talks(CATs) #1 司会進行スライド(2024.09.19) / classmethod-ai-talks-aka-cats_moderator-slides_vol1_2024-09-19
shinyaa31
0
240
学術機関におけるID連携とOpenID Connect
fujie
0
320
Featured
See All Featured
Why You Should Never Use an ORM
jnunemaker
PRO
53
8.9k
Making the Leap to Tech Lead
cromwellryan
128
8.8k
Building Applications with DynamoDB
mza
90
6k
Reflections from 52 weeks, 52 projects
jeffersonlam
346
20k
Ruby is Unlike a Banana
tanoku
96
11k
Creatively Recalculating Your Daily Design Routine
revolveconf
215
12k
Gamification - CAS2011
davidbonilla
79
5k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
26
3.9k
Fantastic passwords and where to find them - at NoRuKo
philnash
48
2.8k
How GitHub Uses GitHub to Build GitHub
holman
472
290k
Mobile First: as difficult as doing things right
swwweet
221
8.8k
It's Worth the Effort
3n
182
27k
Transcript
トイレにある黒い物体を検知する 2020.10.21 夜開催! ねこIoTLT vol.4
自己紹介 NearMugi(ニアムギ) ねこ2匹飼っています。
ねこ紹介 ニア ・3月8日生まれ 11歳 ・もふもふでかわいい ・寒くなってきたのでさらにもふもふに
ねこ紹介 ムギ ・5月8日生まれ 8歳 ・黒猫でかわいい ・メーメー鳴く ・この子も少し毛が伸びた
イントロ みなさんのおうちでこんなこと ありませんか?
イントロ ねこがトイレの前でじっとしている…
イントロ トイレを見てみると中に 黒い物体が。
イントロ 「これを取ってくれ」と言わんばかりに 立っている。
イントロ すぐに取ってあげたい。 気づいてあげたい。
イントロ IoTで解決してみます。
1.トイレの様子を定期的に撮影 2.撮影した画像から黒い物体を検知 3.LINEで通知 大まかな手順
・30分ごとに撮影する ・部屋の明るさの変化を考慮する ・前回撮影した画像と似ている場合は通知しない ・機械学習は使わずに黒い物体を検知する 細かい仕様
1. ESP32+カメラで撮影、GoogleCloudStorage(GCS)へ画像をアップロードする 2. GCSに画像がアップロードされたイベントをトリガーに Cloud Pub/Subからメッセージが 送信される 3. Node-REDフロー内でCloud Pub/Subのメッセージを受信する
4. 画像をGCSから取得して解析する 5. 黒い物体を検知したとき、 LINEに通知する 手順の詳細 GoogleCloudStorage Cloud Pub/Sub GoogleComputeEngine メッセージ受信 画像取得 解析 通知
Cloud Pub/Subのメッセージを受信したら、 画像を取得する 手順の詳細(Node-REDフロー) 前回の画像をGCSから取得する 処理で使うパラメータを GCSから取得する 解析する ログと解析後の画像を GCSへ保存する
黒い物体を検知できたら LINEへ通知する
黒い物体の検知方法 黒い物体を検知するため OpenCVを使いました
黒い物体の検知方法 カメラで撮った画像 → 2値化(白黒)→白黒反転→輪郭を検出→面積を取得 → 面積の大きさから黒い物体があるか判断 画像から黒い物体を検知するまでの処理
黒い物体の検知方法 adaptiveThreshold : 画像をいい感じに2値化(白黒)する findContours : 黒い背景から白い物体の輪郭を検出する contourArea : 輪郭内の面積を取得する
OpenCVの関数
黒い物体の検知方法 -関数の説明(adaptiveThreshold) 元画像 void adaptiveThreshold(const Mat& src, Mat& dst, double maxValue,
int adaptiveMethod, int thresholdType, int blockSize, double C) 定数Cを変化させることで、白黒の範囲を調整できる C:10 白黒割合:0.29 C:20 白黒割合:0.23 C:30 白黒割合:0.18 C:40 白黒割合:0.13 C:60 白黒割合:0.06 C:70 白黒割合:0.04 C:80 白黒割合:0.03 C:90 白黒割合:0.02 C:50 白黒割合:0.09 ここらへんがちょうど良い
黒い物体の検知方法 -関数の説明(findContours, contourArea) void findContours(const Mat& image, vector<vector<Point> >& contours, int
mode, int method, Point offset=Point()) double contourArea(const Mat& contour) 輪郭を検出すると細かい部分も含まれてしまうので、面積の大きさから判断する 元画像に輪郭を検出したデータを合成したもの 面積の大きさにしきい値を設けたもの
通知 黒い物体を検知するとLINEに通知がきます
結果 検出結果をお見せしたいのですが、 黒い物体があれなので 今回は控えさせていただきます。 そこそこの検出具合でした。 明るさの調整が一番難しいです。
黒い物体の検知のポイント 白黒がはっきりしていると検知しやすいので、 大玉の猫砂がおすすめです
まとめ ・機械学習を使わなくてもある程度の検知が出来ると知りました。 照度センサーなどの補助があればもう少し精度が上がりそうです。 ・検知しやすくさせるため砂を平らにならしたり、砂の汚れ具合を 気にするようになりました。 以上となります。 ご清聴ありがとうございました。