Upgrade to Pro — share decks privately, control downloads, hide ads and more …

How should engineers survive during AI era

How should engineers survive during AI era

Deck of Developer Summit 2017
http://event.shoeisha.jp/devsumi/20170216

Norihiro Shimoda

February 16, 2017
Tweet

More Decks by Norihiro Shimoda

Other Decks in Technology

Transcript

  1. エンジニアを取り巻く環境 機械学習が使え そうな案件 ⼈人⼯工知能がキー ワードになってい る新規案件 ⼈人⼯工知能やりた まえという謎の プレッシャー ⼈人⼯工知能や機械

    学習への興味 数年年前まではなかった機械学習や⼈人⼯工知能 というキーワードが⾒見見え隠れする今⽇日このごろ 11
  2. ⼈人⼯工知能に取り組む⽬目的 • コスト削減 – ⼈人の作業のリプレース • 品質の均⼀一化 – AIは疲れないしコピー可能 •

    既存サービスの強化 – ⼈人⼯工知能の⼒力力を借りてサービスを強化 • 新規事業機会の創出 – クリエイティブな何か この4つが必ずしも全てで はないが、だいたいこんな 感じで考えるはず
  3. ⼊入⼝口 (データ) 出⼝口 (アプリケー ション) ⼈人⼯工知能的 なもの ⼊入⼝口/出⼝口のイメージ 新規のビジネスフロー 既存のビジネスにこだわる必要はなく、

    全く新しい⼊入⼝口/出⼝口を考えても良良い 既存のビジネスにこだわる必要はなく、 全く新しい⼊入⼝口/出⼝口を考えても良良い
  4. プロジェクト推進チーム 1. ビジネスを考える⼈人 – 経営企画など 2. AIとビジネスを繋ぐ⼈人 – いわゆるディレクターとかプロデューサー 3.

    AIそのものを扱う⼈人 – データサイエンティストとか⾔言われる⼈人 4. AIを使った仕組み化する⼈人 – The  エンジニア! 最低限こんな感じのはず
  5. ⼊入⼝口 (データ) 出⼝口 (アプリケー ション) ⼈人⼯工知能的 なもの 既存のビジネスフロー ⼊入⼝口/出⼝口のイメージ(再掲) ビジネス考える⼈人

    ⼈人⼯工知能とビジネスを繋ぐ⼈人 AIそのものを 扱う⼈人 仕組み化を 実現する⼈人 この⼈人が超⼤大事 ここの連携 も超⼤大事
  6. 62

  7. 64

  8. 66

  9. ⼊入⼝口 (データ) 出⼝口 (アプリケー ション) ⼈人⼯工知能的 なもの 既存のビジネスフロー ⼊入⼝口/出⼝口のイメージ(再掲) ビジネス考える⼈人

    ⼈人⼯工知能とビジネスを繋ぐ⼈人 AIそのものを 扱う⼈人 仕組み化を 実現する⼈人 全てエンジニアのキャリアとして有りえますし、エ ンジニアのバックグラウンドがある⼈人がなるべき 全てエンジニアのキャリアとして有りえますし、エ ンジニアのバックグラウンドがある⼈人がなるべき 全てエンジニアのキャリアとして有りえますし、エ ンジニアのバックグラウンドがある⼈人がなるべき 全てエンジニアのキャリアとして有りえますし、エ ンジニアのバックグラウンドがある⼈人がなるべき
  10. AIを仕組み化する⼈人 74 アルゴリズム データの パイプライン 可⽤用性 パフォーマンス テスト etc… ジョブスケ

    ジューリング アルゴリズムはある、それをどう仕組み化するか ⼀一番⾃自然にポジションを築きやすいはず
  11. ⼈人⼯工知能とビジネスを繋ぐ⼈人 79 ビジネスとし てやりたい事 AIにできる事 ビジネス x  機械学習 x  エンジニアリング

    仕組み(サービス/ プロダクト)とし ての提供 個⼈人的にはここがもっと増えて来ても良良いと思っています 既存のPM以上に技術のバックグラウンドが必要なはず 新しいPMの形があると思っています
  12. 機械学習のトレンド • R使ってコツコツ • ⼤大きなデータだとRは⾟辛いなぁ • Pythonがあるぞ • Scikit-‐‑‒learnがデファクトっぽくなる •

    機械学習ではPythonがよく選ばれる ⼤大規模データ分析のトレンド • RとかPythonで⼀一台のマシンだと ⾟辛い。⾼高価なDWHとかに投資する のも限界 • Hadoop登場! • Hadoop上でそのまま機械学習した い要望にMahout • Hadoopだとデータ分析のタスクは ⾟辛いのでSpark登場 • SparkはMLlibもあって、⼤大規模な 機械学習の決定打はこれだ 82 機械学習 x  ⼤大規模データ分析の これまでのトレンド
  13. 96