Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Monocular 3D Object Detection Survey
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Hata Ryosuke
January 22, 2020
Research
3
500
Monocular 3D Object Detection Survey
Survey for a kaggle competition: Peking University/Baidu - Autonomous Driving
Hata Ryosuke
January 22, 2020
Tweet
Share
More Decks by Hata Ryosuke
See All by Hata Ryosuke
関西Kaggler会 発表スライド
ryosukehata
1
1.2k
pytorchで機械学習しない
ryosukehata
3
1.1k
量子情報勉強会,量子ゲートについて
ryosukehata
0
240
Other Decks in Research
See All in Research
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
410
Remote sensing × Multi-modal meta survey
satai
4
710
SREのためのテレメトリー技術の探究 / Telemetry for SRE
yuukit
13
3k
HoliTracer:Holistic Vectorization of Geographic Objects from Large-Size Remote Sensing Imagery
satai
3
610
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
310
Upgrading Multi-Agent Pathfinding for the Real World
kei18
0
180
Can AI Generated Ambrotype Chain the Aura of Alternative Process? In SIGGRAPH Asia 2024 Art Papers
toremolo72
0
130
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
570
ForestCast: Forecasting Deforestation Risk at Scale with Deep Learning
satai
3
380
LLM-jp-3 and beyond: Training Large Language Models
odashi
1
760
生成AI による論文執筆サポート・ワークショップ 論文執筆・推敲編 / Generative AI-Assisted Paper Writing Support Workshop: Drafting and Revision Edition
ks91
PRO
0
120
視覚から身体性を持つAIへ: 巧緻な動作の3次元理解
tkhkaeio
0
190
Featured
See All Featured
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.3k
Embracing the Ebb and Flow
colly
88
5k
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
49
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
How to make the Groovebox
asonas
2
1.9k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
380
What the history of the web can teach us about the future of AI
inesmontani
PRO
1
430
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.6k
Navigating Algorithm Shifts & AI Overviews - #SMXNext
aleyda
0
1.1k
Agile that works and the tools we love
rasmusluckow
331
21k
Transcript
Monocular 3D Object Detection Survey 畑 遼介
Summary ・CAD modelを使わないもの[1, 2] End to Endで学習が可能。(OFTNet) ・CAD modelを使う[3, 4,
5, 6, 7] 1 Stage: Mask-RCNN, RoIを作成 2 Stage: RoIから三次元情報を作成 論文中よく使われているのはFaster R-CNNだが, ここから最後までやるのはつらそう。
[1] Orthographic Feature Transform for Monocular 3D Object Detection 2018/11
https://arxiv.org/abs/1811.08188
Key Point 特徴 ・二次元画像から,三次元の特徴量を作り,上から見た図を作成し, 位置推定などを行う。 ・三次元の特徴量を作成する際に奥行き推定はしない。 ・物体の中心のNMSをする。 ・CenterNetと似たようなpipeline。 利点 ・EndToEnd ・Githubにコードがある。
・論文の参考値に必ず出てくるので実績がある。 欠点 ・奥行き推定がないので,重なっているObjectの部分は共有される。 →深さ推定すれば精度はあがる? ・CADを使わない。 コメント:今回のタスク的に, CenterNetとアンサンブルしても良いかもしれない。
アーキテクチャ ・二次元画像から,ResNetで特徴量抽出。三次元特徴量を作成 したあとに上から見た画像への変更→位置,座標,角度から損 失関数を計算。
[2] SHIFT R-CNN: DEEP MONOCULAR 3D OBJECT DETECTION WITH CLOSED-FROM
GEOMETRIC CONSTRAINTS 2019/03 https://arxiv.org/abs/1905.09970
Key Point 特徴 ・RoIAlignedを使って,3次元位置推定をする。 ・三次元Bounding Boxを作って,車の位置tを算出する。 ・その後,Bouding Boxや位置情報を三層のNNに入れて位置を改善 する(ShiftNet)。 利点
・最後のShitNetはどのアーキテクチャーでも使えるだろう。 欠点 ・End to Endではない。 RoIAlignedを使う時点でR-CNNのアーキテク チャは使っている。 ・CADを使わない。 コメント:わざわざ読まなくても良いと思う。
アーキテクチャ ・Stage 1で2D Boxの推定,三次元の推定,方向の推定。 ・Stage 2でカメラからの位置を計算する。 ・Stage 3で位置をシフトさせて,精度を上げる。
[3] Deep MANT: A Coarse-to-fine Many-Task Network for joint 2D
and 3D vehicle analysis from monocular image 2017/3 https://arxiv.org/abs/1703.07570
Key Point 特徴 ・二次元データから特徴点を抽出して三次元データとマッチさせるは じめの論文。 ・車は特徴的な形状をしているので,三次元データへと再現ができる と提言している。 利点 ・CADを使う。 欠点
・End to Endではない。Cascaded R-CNNのアーキテクチャを使って二 次元特徴量を出している。 ・三次元のテンプレートマッチングのやり方が不明。 コメント:精度はそこまで出ているわけではないので読まなくてもいい と思う。
アーキテクチャ ・Stage 1で分類,二次元Bouding Box,二次元位置,隠れ度合 い, テンプレートとの類似度 ・Stage 2でStage1で抽出したデータから三次元テンプレートと のマッチング
[4] 3D-RCNN: Instance-level 3D Object Reconstruction via Render-and-Compose 2018 http://abhijitkundu.info/projects/3D-RCNN/
CVPR 2018
Key Point 特徴 ・RoIから特徴量抽出→分岐させてregression ・分岐の中身はamodal Box(見えない部分を含めたBounding Box), 中心位置,角度 ,3D CADをPCAで10次元に圧縮したもの。
・上の情報を使って三次元画像をレンダリング,二次元上に再生して,マスターと比 較。 利点 ・CADを使う。精度は出そう。 欠点 ・End to Endではない。 ・pipelineをすべて動かそうと思うと,R−CNNスタートで間にOpenGLを 使うことがあるので,手間がすごそう。 コメント:3D CADをPCAするアイデアは使えそう。 ただし,すべてのpipelineを通すとなると辛そう。
アーキテクチャ ・Stage 1でRoIを抽出 ・Stage 2でRoIの特徴量を抽出(論文ではResNet-50) →分岐 →amodal Box(見えない部分を含めたBounding Box),
中心位 置,角度,構造特徴(PCAしたもの)を それぞれLossを出す(右 側の図はPoseとshapeの損失構造の詳細) ・Stage 3 2で得られた情報をもとに三次元の構造体をレンダリ ングして,二次元画像上に再生/比較
[5] Mono3D++: Monocular 3D Vehicle Detection with Two-Scale 3D Hypotheses
and Task Priors 2019/1 https://arxiv.org/abs/1901.03446
Key Point 特徴 ・SSDの特徴量から2次元擬推定,3次元Bounding Box, WireFrameに よる推定によるJointで最終的にrobostな3次元位置推定。(別の車に 隠れている車があるので,より頑健にしたい) ・Loss function周りや,3次元推定の数式の説明が丁寧。
利点 ・SSDでやってるので,理屈の上ではEnd to End 欠点 ・実験は2次元Bounding Boxを出すのに一週間,その後の処理が2 時間とか書かれているので,End to Endとは言い難い。 ・数式を追うのが結構しんどい。 コメント:数式を読んで実装することを考えると参考にはならなさそう。 精読するならば読み応えありそう。
アーキテクチャ ・SSDに似たアーキテクチャーで2次元Bounding Boxを抽出。 ・その後,二次元のワイヤフレームを作っているものと,3次元 Bounding Boxとwireframe shape modelとマッチ。 ・ロスを読む限り,一つずつ3次元データとマッチさせている。
[6] Monocular 3D Object Detection via Geometric Reasoning on Keypoints
2019/5 https://arxiv.org/abs/1905.05618
Key Point 特徴 ・Mask R-CNNを通したあとの2次元Bounding Boxの特徴量から1. 14点のkeypoint(おそらく特徴点)を抽出 2.角度などの推定 3.5つの3D CADとのテンプレートマッチ
する。 ・1➖3の特徴量から深さ推定して,位置を特定する。 利点 ・CADの一部を使う。 欠点 ・多分。End to Endではない コメント:使っているCADがセダンやミニバンなどの特徴的な車の5種 だったので途中で読むのをやめた。あまり有用ではないと思う。
アーキテクチャ ・Stage 1でFPN ResNet-101 RoIを抽出 ・Stage 2でRoIの特徴量を 1.14点のkeypoint(おそらく特徴点)を抽出する。 2.角度などの推定 3.5つの3D
CADとのテンプレートマッチ とカメラ情報から深さ推定,3次元の位置推定
[7] Monocular 3D Object Detection Leveraging Accurate Proposals and Shape
Reconstruction 2019/4 https://arxiv.org/abs/1904.01690 CVPR 2019
Key Point 特徴 ・2次元画像だけから,3次元位置を含んだ絵を作成することを目的 にした論文。 ・その過程で位置推定を行っている。 利点 ・実用上CADデータがない場合もあるので,そのときにも使える。 欠点 ・コンペ的にはCADは与えられているので,使わないことは欠点
コメント:Feature Mapの作り方は参考になりそうだが,研究内容が現 在のコンペの目的を超えているためすべての実装はいらない。技術 的には面白そう。
アーキテクチャ ・特徴量を,二次元Bounding Boxesともとデータを畳み込んであ とに同じ位置をCropしたもので抽出する。 ・得た特徴量から,車の角度,3次元Bounding Boxの中心位置 と大きさを推定する。 ・得られた特徴量から深さ推定を行う。 ・もとの特徴量から,車だけの画像を作成し,上で得た位置など の特徴量を使って,もとの空間に再現する。