Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data Pipeline Casual Talk for Ready
Search
tetsuroito
February 08, 2019
Research
1
12k
Data Pipeline Casual Talk for Ready
20190213 Data Pipeline Casual Talk @エムスリーのオープニングトーク資料です。
tetsuroito
February 08, 2019
Tweet
Share
More Decks by tetsuroito
See All by tetsuroito
データエンジニアリングの潮流を俯瞰する
tetsuroito
1
1.8k
Classiが取り組んできた 機械学習の試行錯誤
tetsuroito
0
850
事業会社でのデータマネジメントのプラクティス #TechMar
tetsuroito
1
640
Data Engineering Study #9 Classiのデータ組織の歩み
tetsuroito
5
5.8k
Data Engineering Study #3 基調講演_データ分析基盤の浸透に必要なこと
tetsuroito
4
4.8k
Subscription Meetup Vol.2 Opening Talk Slide
tetsuroito
0
140
Data_Pipeline_Casual_Talk_Vol.4_for_Ready.pdf
tetsuroito
0
1.5k
Data Pipeline Casual Talk Vol.3 for Ready #DPCT
tetsuroito
0
1.9k
データサイエンティスト養成読本ビジネス活用編のこぼれ話とエンジニアとデータサイエンティストのコラボについて
tetsuroito
3
3.3k
Other Decks in Research
See All in Research
Fairer and More Scalable Reader-Writer Locks by Optimizing Queue Management
starpos
0
110
定性データ、どう活かす? 〜定性データのための分析基盤、はじめました〜 / How to utilize qualitative data? ~We have launched an analysis platform for qualitative data~
kaminashi
6
1k
Introduction of NII S. Koyama's Lab (AY2025)
skoyamalab
0
480
電力システム最適化入門
mickey_kubo
1
620
作業記憶の発達的特性が言語獲得の臨界期を形成する(NLP2025)
chemical_tree
2
590
心理言語学の視点から再考する言語モデルの学習過程
chemical_tree
2
160
20250605_新交通システム推進議連_熊本都市圏「車1割削減、渋滞半減、公共交通2倍」から考える地方都市交通政策
trafficbrain
0
380
GeoCLIP: Clip-Inspired Alignment between Locations and Images for Effective Worldwide Geo-localization
satai
3
230
Large Language Model Agent: A Survey on Methodology, Applications and Challenges
shunk031
12
7.9k
MGDSS:慣性式モーションキャプチャを用いたジェスチャによるドローンの操作 / ec75-yamauchi
yumulab
0
230
ことばの意味を計算するしくみ
verypluming
11
2.6k
公立高校入試等に対する受入保留アルゴリズム(DA)導入の提言
shunyanoda
0
5.6k
Featured
See All Featured
Six Lessons from altMBA
skipperchong
28
3.8k
Thoughts on Productivity
jonyablonski
69
4.7k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.3k
RailsConf 2023
tenderlove
30
1.1k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.2k
We Have a Design System, Now What?
morganepeng
52
7.6k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
46
9.6k
Typedesign – Prime Four
hannesfritz
42
2.7k
A designer walks into a library…
pauljervisheath
206
24k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.4k
Code Review Best Practice
trishagee
68
18k
Writing Fast Ruby
sferik
628
61k
Transcript
Data Pipeline Casual Talk for Ready 2019/02/13(Wed) @エムスリー
何者ですか? • 名前:伊藤 徹郎 (@tetsuroito) • 所属:Classi株式会社 AI室 データサイエンティスト •
分野:Educational Technology , Learning Analytics • 著書:データサイエンティスト養成読本ビジネス活用編 • 運営: ◦ Machine Learning Casual Talks ◦ Data Analyst Meetup Tokyo など
カジュアルとは 引用 https://twitter.com/con_mame/status/457130929270435840
#DPCTの狙い データ活用のコモディティ化がだいぶ浸透した ガートナー・ハイプサイクル 2018の図は https://japan.zdnet.com/article/35126917/ より引用
#DPCTの狙い • すべてのリソースとなる「データ」 • 活用の必要性は周知の通り • 21世紀の石油と形容されることもある • ビッグデータと称し、「量」が重視される •
GPUなどの計算リソースなどの進化 などなど
#DPCTの狙い そのデータの生成過程知ってますか? 誰がどうやって利用可能なデータにして いますか? 品質を上げるための苦労を知ってます か? それを担っているのは誰ですか? どんなスキルや経験が必要ですか? どんなツールがありますか? え、機械学習に使いたいって?
・・・
#DPCTの狙い • データの処理工程であるパイプラインがまだ軽視されている • パイプラインの技術情報の共有 • 活用へのパイプライン、機械学習へのパイプライン(MLパイプライン) • 様々なツールの情報 •
担い手のスキル情報 • チームビルディング • 運用における課題 etc こんなことをカジュアルに話すのは#DPCTです!
登壇者だけでなく、 参加者のみなさんからの活発な議論を よろしくお願いします!
大好評のため、次回も開催したいと思います。 発表者および会場を募集します。 よろしくお願いします。
Appendix:申込者属性集計(複数回答可)
Appendix:DPCTに期待すること
Appendix:DPCTに期待すること