Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[論文紹介] Chip Placement with Deep Reinforcement L...
Search
tt1717
April 29, 2024
Research
0
81
[論文紹介] Chip Placement with Deep Reinforcement Learning
PDFファイルをダウンロードすると,スライド内のリンクを見ることができます.
tt1717
April 29, 2024
Tweet
Share
More Decks by tt1717
See All by tt1717
[論文サーベイ] Survey on VLM for Video Game Quality Assurance
tt1717
0
7
[論文サーベイ] Survey on Pokemon AI 3
tt1717
0
61
[論文サーベイ] Survey on Pokemon AI 2
tt1717
0
46
[論文サーベイ] Survey on Pokemon AI
tt1717
0
79
[論文サーベイ] Survey on Minecraft AI in NeurIPS 2024
tt1717
0
85
[論文サーベイ] Survey on GPT for Games
tt1717
0
64
[論文サーベイ] Survey on World Models for Games
tt1717
0
160
[論文サーベイ] Survey on Linguistic Explanations in Deep Reinforcement Learning of Atari Tasks
tt1717
0
65
[論文サーベイ] Survey on Visualization in Deep Reinforcement Learning of Game Tasks 2
tt1717
0
69
Other Decks in Research
See All in Research
20250624_熊本経済同友会6月例会講演
trafficbrain
1
700
心理言語学の視点から再考する言語モデルの学習過程
chemical_tree
2
640
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
230
SegEarth-OV: Towards Training-Free Open-Vocabulary Segmentation for Remote Sensing Images
satai
3
340
単施設でできる臨床研究の考え方
shuntaros
0
3.1k
機械学習と数理最適化の融合 (MOAI) による革新
mickey_kubo
1
400
Mechanistic Interpretability:解釈可能性研究の新たな潮流
koshiro_aoki
1
490
Combining Deep Learning and Street View Imagery to Map Smallholder Crop Types
satai
3
120
一人称視点映像解析の最先端(MIRU2025 チュートリアル)
takumayagi
6
4k
20250605_新交通システム推進議連_熊本都市圏「車1割削減、渋滞半減、公共交通2倍」から考える地方都市交通政策
trafficbrain
0
910
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
350
大学見本市2025 JSTさきがけ事業セミナー「顔の見えないセンシング技術:多様なセンサにもとづく個人情報に配慮した人物状態推定」
miso2024
0
170
Featured
See All Featured
Git: the NoSQL Database
bkeepers
PRO
431
66k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.7k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.7k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
Making the Leap to Tech Lead
cromwellryan
135
9.6k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
The Language of Interfaces
destraynor
162
25k
What's in a price? How to price your products and services
michaelherold
246
12k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
54k
Done Done
chrislema
185
16k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Docker and Python
trallard
46
3.6k
Transcript
・チップの各コンポーネントを構成要素のグラフとして表現し,こ のグラフを効率的にチップのキャンバス上に配置する方策ネット ワークを訓練する. ・従来のチップ配置では多くが人間の専門家の介入を必要としてい た. ・提案した学習ベース手法では経験を積むことで性能が向上し,新 しいチップ配置を高速に生成できる. ・チップ配置を強化学習問題として扱う新たなアプローチを提案. ・提案手法では過去のチップ配置経験から学習し,未知のチップブ ロックに対して最適化された配置を高速に生成する能力があること
を示した. どんなもの? 先行研究と比べて何がすごい? 技術の手法や肝は? どうやって有効だと検証した? ・実際のAIアクセラレータチップ(Google TPUなど)に対して提案 手法を用いてチップ配置を行い,既存のベースライン(人間の専門 家の配置や他の自動配置ツール)と比較することで検証した. ・配置後のPPA(パワー,パフォーマンス,面積)の最適化を評価し た. Chip Placement with Deep Reinforcement Learning (arXiv 2020) Azalia Mirhoseini et al., Google Research. https://arxiv.org/abs/2004.10746 2024/04/28 論文を表す画像 被引用数:224 1/7
❖ 強化学習エージェントがマクロを一つずつ配置する様子を示す ❖ すべてのマクロ配置後,部品は力学的方法(力指向メソッド)を用い て配置される ➢ 力指向メソッド:互いに関連する部品は近くに配置され,関係のない部品 は離れた場所に配置されるようにすること ❖ 報酬はワイヤ長と輻輳の組み合わせで計算され,エージェントが次の
イテレーションでそのパラメータを最適化するために使用する ➢ ワイヤ長:チップの上で部品をつなぐワイヤの長さを推測する方法 ➢ 輻輳:あるエリア内に多くのワイヤが集中してしまう状態 提案手法 2/7
❖ 電子回路の構成要素 (ネットリスト) をGNNで処理 ❖ エッジ埋め込みの処理 ➢ ネットリスト内の異なるコンポーネント間の接続の強さや特性を表現 ❖ マクロ埋め込みの処理
➢ マクロ(大きな回路要素)の特性をベクトル形式で表現 ❖ 方策ネットワークによる処理 ➢ ネットリストの情報を基に,各マクロの配置における「行動」を選択する 提案手法 3/7
❖ CPUのチップ配置結果を視覚化したもの ➢ 左:事前学習済みの方策ネットワークによるゼロショット配置 ➢ 右:ファインチューニング後の方策ネットワークによる配置 ❖ ファインチューニング後の結果は配置が綺麗に揃っている 実験結果 4/7
❖ 強化学習とSA (焼きなまし法) によるサンプル効率の比較 ❖ ワイヤ長 (Wirelength) と輻輳 (Congestion)は低い方が良い ❖
強化学習を使用した提案手法がSAと比較して最適な配置をしていると 解釈できる 実験結果 5/7
❖ 強化学習を使用したチップ配置の最適化手法を提案した ❖ SA (焼きなまし法) と比較して最適配置を達成した まとめ 6/7
❖ チップにおける最適配置問題を強化学習で解こうとするアイデアが面 白かった ❖ 報酬設計の部分や実装コードがどのようになっているのか理解したい 感想 7/7