Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[論文紹介] 状態遷移差分の学習による耐故障ロボットのための強化学習
Search
tt1717
January 26, 2024
Research
0
49
[論文紹介] 状態遷移差分の学習による耐故障ロボットのための強化学習
PDFファイルをダウンロードすると,スライド内のリンクを見ることができます.
tt1717
January 26, 2024
Tweet
Share
More Decks by tt1717
See All by tt1717
[論文サーベイ] Survey on Minecraft AI in NeurIPS 2024
tt1717
0
19
[論文サーベイ] Survey on GPT for Games
tt1717
0
31
[論文サーベイ] Survey on World Models for Games
tt1717
0
53
[論文サーベイ] Survey on Linguistic Explanations in Deep Reinforcement Learning of Atari Tasks
tt1717
0
35
[論文サーベイ] Survey on Visualization in Deep Reinforcement Learning of Game Tasks 2
tt1717
0
38
[論文サーベイ] Survey on VLM and Reinforcement Learning in Game Tasks (Minecraft)
tt1717
0
61
[論文紹介] RT-1: Robotics Transformer for Real-World Control at Scale
tt1717
0
91
[論文紹介] Chip Placement with Deep Reinforcement Learning
tt1717
0
54
[論文紹介] Human-level control through deep reinforcement learning
tt1717
0
270
Other Decks in Research
See All in Research
言語と数理の交差点:テキストの埋め込みと構造のモデル化 (IBIS 2024 チュートリアル)
yukiar
5
1.1k
2038年問題が思ったよりヤバい。検出ツールを作って脅威性評価してみた論文 | Kansai Open Forum 2024
ran350
8
3.8k
地理空間情報と自然言語処理:「地球の歩き方旅行記データセット」の高付加価値化を通じて
hiroki13
1
190
論文紹介: COSMO: A Large-Scale E-commerce Common Sense Knowledge Generation and Serving System at Amazon (SIGMOD 2024)
ynakano
1
380
ダイナミックプライシング とその実例
skmr2348
3
590
医療支援AI開発における臨床と情報学の連携を円滑に進めるために
moda0
0
150
VisFocus: Prompt-Guided Vision Encoders for OCR-Free Dense Document Understanding
sansan_randd
1
460
打率7割を実現する、プロダクトディスカバリーの7つの極意(pmconf2024)
geshi0820
0
300
新規のC言語処理系を実装することによる 組込みシステム研究にもたらす価値 についての考察
zacky1972
1
320
Tiaccoon: コンテナネットワークにおいて複数トランスポート方式で統一的なアクセス制御
hiroyaonoe
0
410
セミコン地域における総合交通戦略
trafficbrain
0
110
Gemini と Looker で営業DX をドライブする / Driving Sales DX with Gemini and Looker
sansan_randd
0
120
Featured
See All Featured
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
9
440
How to train your dragon (web standard)
notwaldorf
91
5.8k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.6k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
193
16k
Designing Experiences People Love
moore
140
23k
Visualization
eitanlees
146
15k
How to Ace a Technical Interview
jacobian
276
23k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
40
2k
Docker and Python
trallard
44
3.3k
GraphQLの誤解/rethinking-graphql
sonatard
68
10k
Designing on Purpose - Digital PM Summit 2013
jponch
117
7.1k
Adopting Sorbet at Scale
ufuk
74
9.2k
Transcript
・walker2Dを使用 ・3通りの訓練で検証 1.正常なロボットのみで訓練 (normal policy) 2.ロボットをランダムに故障させながら訓練 (robust policy) 3.状態遷移の差分を用いて故障させながら訓練 (our
policy) どんなもの? 先行研究と比べて何がすごい? 技術の手法や肝は? どうやって有効だと検証した? ・故障度合いが大きいとき,our policyとrubust policyで高い収益を 得られた ・故障度合いが小さいとき,our policyで高い収益を得られた 故障の表現 ・故障する関節をランダムに選択し,関節アクチュエータのトルク に対して,故障係数kをかける ・故障係数kは一様分布U(0.0,2.0)からサンプリングする ・MDPにおける遷移関数に対して,正常時の遷移関数と故障時の遷 移関数の差分を利用して故障度合いを表現する手法を提案 状態遷移差分の学習による耐故障ロボットのための強化学習 (JSAI 2020)大里 虹平, 川本 一彦 https://www.jstage.jst.go.jp/article/pjsai/JSAI2020/0/JSAI2020_4Rin134/_pdf 2024/01/26 論文を表す画像 被引用数:- 1/4
故障の表現 ❏ 正常時の遷移関数Tnormalと故障時の遷移関数Tbrokenが異なることを 利用 ❏ Tnormalと遷移関数Tが等しければ正常,そうでなければ故障とみなす ❏ Stdiff:ロボットの故障度合いを反映したパラメータ ❏ St:t時刻の状態
❏ Stnormal:正常時ロボットを仮定してt時刻の状態 ❏ Tnormalは未知関数なのでニューラルネットワークで表現する ❏ 定常環境でStnormalを収集し,これを教師データとして遷移予測ネッ トワークを訓練する ❏ St^normalとSt^diffは予測値を意味する 2/4
実験結果 ❏ 結果 ❏ 故障度合いが大きいとき,our policyとrobust policyで高い収益 ❏ 故障度合いが小さいとき,our policyで高い収益
3/4 ❏ 実験設定 ❏ 正常なロボットのみで訓練 (normal policy) ❏ ロボットをランダムに故障させな がら訓練 (robust policy) ❏ 状態遷移の差分を用いて故障させ ながら訓練 (our policy) ❏ hip,knee,ankleに対してkを0.25刻 みで故障させて評価する ❏ 各手法に対して3つのシード値で 3200万ステップ訓練する
❏ まとめ ❏ 正常時の遷移関数を学習する ❏ 予測される状態遷移と実際の状態遷移の差分を方策ネットワークに加える ❏ これにより,故障度合いを識別しながら学習する手法を提案 ❏ 提案手法では,正常時および故障時に遷移関数を利用しない方策より高い
収益を獲得した ❏ 感想 ❏ 提案手法の概要とイメージを掴むことができたが,方策ネットワークに入 力される「StとSt^diff」の2つを入力するのをどのように実装しているの か気になる (通常,t時刻に対する状態は1つだけいれる) ❏ 他のロボット (hopper,halfcheetah,ant)による実験でも,同様の結果が得 られるのか気になる ❏ この研究では,オンライン強化学習の設定で行っているが,オフライン強 化学習の設定で行った場合,結果に変化があるのか見てみたい まとめと感想 4/4