Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ChatGPTのアルゴリズム
Search
Yunosuke Yamada
March 03, 2023
Technology
0
380
ChatGPTのアルゴリズム
ニューラルネット系自然言語処理の歴史を、アルゴリズムも紹介しながら単純パーセプトロンからChatGPTに至るまで辿る
Yunosuke Yamada
March 03, 2023
Tweet
Share
More Decks by Yunosuke Yamada
See All by Yunosuke Yamada
AIエージェントのオブザーバビリティについて
yunosukey
1
670
OpenTelemetry + LLM = OpenLLMetry!?
yunosukey
2
570
クラウド開発環境Cloud Workstationsの紹介
yunosukey
0
280
フロントエンドオブザーバビリティ on Google Cloud
yunosukey
1
250
React and XSS
yunosukey
0
310
DB Tree Algorithms
yunosukey
0
100
Tests in Go
yunosukey
1
120
Bugless Code
yunosukey
0
140
圏論とコンピュータサイエンス / Category Theory and Theoretical Computer Science
yunosukey
0
290
Other Decks in Technology
See All in Technology
AWS CDKの仕組み / how-aws-cdk-works
gotok365
10
730
「Chatwork」のEKS環境を支えるhelmfileを使用したマニフェスト管理術
hanayo04
1
210
Claude Code に プロジェクト管理やらせたみた
unson
7
4.8k
Delta airlines®️ USA Contact Numbers: Complete 2025 Support Guide
airtravelguide
0
350
AWS CDK 入門ガイド これだけは知っておきたいヒント集
anank
4
490
Amplify Gen2から知るAWS CDK Toolkit Libraryの使い方/How to use the AWS CDK Toolkit Library as known from Amplify Gen2
fossamagna
0
150
freeeのアクセシビリティの現在地 / freee's Current Position on Accessibility
ymrl
2
260
How to Quickly Call American Airlines®️ U.S. Customer Care : Full Guide
flyaahelpguide
0
230
AIエージェントが書くのなら直接CloudFormationを書かせればいいじゃないですか何故AWS CDKを使う必要があるのさ
watany
14
5.9k
60以上のプロダクトを持つ組織における開発者体験向上への取り組み - チームAPIとBackstageで構築する組織の可視化基盤 - / sre next 2025 Efforts to Improve Developer Experience in an Organization with Over 60 Products
vtryo
2
630
Contributing to Rails? Start with the Gems You Already Use
yahonda
2
120
ポストコロナ時代の SaaS におけるコスト削減の意義
izzii
1
190
Featured
See All Featured
Navigating Team Friction
lara
187
15k
Art, The Web, and Tiny UX
lynnandtonic
299
21k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Rails Girls Zürich Keynote
gr2m
95
14k
4 Signs Your Business is Dying
shpigford
184
22k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
Being A Developer After 40
akosma
90
590k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
20
1.3k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
510
Transcript
ニューラルネットの誕生から ChatGPTまで 山田悠之介 2023/03/03
概要 目次 • 前半:ニューラルネットワークについて • 後半:自然言語処理とニューラルネット • 数式を使わずにできるだけアナロジーで説明 • 用語はちゃんと使う
2
保険 • 自分が勉強したのは学部3年の時 ◦ 5年前、2017年 ◦ ChatGPTの元になる論文:2017年 • 理論まで理解していたのは基礎的な内容 (ニューラルネットの話)
• 後半になるについて「らしい」が増えていきます 3
ニューラルネットワーク (NN) 4
単純パーセプトロン(50、60年代) • ≒1つの神経細胞をモデル化 • いい感じに学習(重みの更新)させることで線形分離可能な問題を解ける ◦ 「線形分離可能な問題」:平面を線で区切る、3次元を面で区切る • そうでない問題は解けない... ◦
下火に 5
多層パーセプトロン(80年代) • さっきの神経細胞を繋げていく • シナプス伝達のモデル化 • 重みの更新は出力側から入力側に伝播させる(誤差逆伝播) • 中間層のおかげで線形分離可能でなくても識別できる •
中間層を増やすにはマシンパワーが... ◦ 再び下火に 6
深層学習(2000年代) • マシンパワーが改善されたことで階層が深くても学習できるように • そして新しい問題が ◦ 局所最適解 ◦ 勾配の消失 7
局所最適解 • 学習は山登りに例えられる ◦ 今いる地点の傾き(勾配)を見て、上にいく(勾配法) • 逆に今いる地点しか見れないので、周りを見るともっと高い山があるのに、 手近な頂上を目指してしまう(局所最適解) ◦ 初めのうちは気まぐれで
上以外の方向に進んでみる (確率的勾配降下法) ◦ でも結局、間違った答えを 出すことはある 8
勾配の消失 • 上の方に進んでいきたいが、傾きが0だとどっちに行けば良いか分からない ◦ 学習が止まる • 誤差は逆伝播させていくので、より出力側で勾配が0になると、 入力側も学習が止まる ◦ 勾配の消失
• 階層が深くなると発生しやすくなる ◦ いろんな対応がある 9
自然言語処理(NLP)とNN 10
RNN (Recurrent neural network) • ネットワーク内で循環があるもの • 再帰的な構造のおかげで過去の状態、文脈を考慮できると言われている ◦ NLPへの応用
• 一方でうまくいっていない部分も ◦ 長期的な依存関係の学習 ◦ 勾配消失問題の発生 11
LSTM (Long short-term memory) • 長期記憶と短期記憶のモデル化 • RNNの問題点改善のため • ユニットとしてパーセプトロンではなく、
記憶の保持と忘却ができるものを利用? 12
Encoder-DecoderモデルとSeq2Seq • Encoder-Decoderモデル ◦ 入力をエンコーダで中間表現に変換してからデコーダで出力する • Seq2Seq (2014) ◦ Encoder-Decoderモデルのうち、入出力が系列になっているもの
◦ エンコーダ、デコーダにはRNN(LSTM)が使われる 13
Seq2Seq with Attention (2015) • Seq2Seqはエンコーダからデコーダに渡る情報が少なかったため、 精度が良くなかった • 改善のためAttentionが導入 ◦
2つの文章中の単語のペアに対して、 どのペアが重要か ◦ 異なる文章:Source-Target Attention ◦ 同じ文章 :Self Attention ◦ 長い文でも単語の関係をとらえやすくなった 14
Transformer (2017) • Attentionに注目 • Encoder-Decoderモデルだが RNN、LSTMを使わない • エンコーダ、デコーダには NNを6段ずつ使う
• 精度が良く、学習も並列でできる • Google翻訳もこのアルゴリズム 15
GPT (Generative Pre-trained Transformer) • Transformerの1種 • 教師あり学習するには、人力でデータを用意する必要 • 精度を上げるにはデータは多いほど良いが、大変(無理なこともある)
• 教師なしでの事前学習を採用し、その後用途別の調整 • GPT-3では570GBの文章で事前学習 ◦ GPT-3.5: GPT-3に編集と挿入機能を持たせる ◦ ChatGPT: GPT-3.5に対して微調整したもの 16
終わり 17