Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Rで学ぶデータハンドリング入門/Introduction_to_Data_Handling_w...
Search
florets1
September 14, 2025
Business
0
120
Rで学ぶデータハンドリング入門/Introduction_to_Data_Handling_with_R
florets1
September 14, 2025
Tweet
Share
More Decks by florets1
See All by florets1
Tableauとggplot2の背景/Background_of_Tableau_and_ggplot2
florets1
0
47
人工知能はクロスジョインでできている/AI_Is_Built_on_Cross_Joins
florets1
0
73
仮説の取扱説明書/User_Guide_to_a_Hypothesis
florets1
4
420
複式簿記から純資産を排除する/eliminate_net_assets_from_double-entry_bookkeeping
florets1
1
440
カイ二乗検定は何をやっているのか/What_Does_the_Chi-Square_Test_Do
florets1
7
2.4k
直積は便利/direct_product_is_useful
florets1
3
440
butterfly_effect/butterfly_effect_in-house
florets1
1
260
データハンドリング/data_handling
florets1
2
260
カイ二乗検定との遭遇/The_path_to_encountering_the_chi-square_test
florets1
1
320
Other Decks in Business
See All in Business
AIがコードを書く時代にエンジニア組織が事業に貢献する仕組み / How engineering organizations can contribute to business in an age where AI writes code
bpstudy
0
160
AIを使ってライティングを楽に!MCP Serverの活用
hebiko
0
170
「2025年のAI」と「2026年のAI」
masayamoriofficial
1
420
Chatwork×BPaaS×AIエージェントで創る 次世代コーディネート基盤
kubell_hr
0
2.9k
SimpleForm 会社紹介資料
simpleform
2
50k
(6枚)プレゼンの技法 ピラミッドストラクチャー PREP法 SDS法 STAR法
nyattx
PRO
1
300
㈱サンエー 会社 採用資料
uemura2024
0
390
TOKIUM - Company Deck - engineering
tokium
0
280
組織としてのプロダクトマネジメント力を高める〜Sansanの実践と課題〜
sansantech
PRO
2
110
株式会社Domuz会社紹介資料(採用)
kimpachi_d
0
48k
(8枚)営業プロセス、パイプライン、予材管理、カスタマージャーニーの基本
nyattx
PRO
0
120
QuackShift 会社紹介資料
riekondo
0
550
Featured
See All Featured
The Curse of the Amulet
leimatthew05
0
6.5k
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Building Flexible Design Systems
yeseniaperezcruz
330
39k
Building Adaptive Systems
keathley
44
2.9k
Ethics towards AI in product and experience design
skipperchong
1
150
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
How to Ace a Technical Interview
jacobian
281
24k
Done Done
chrislema
186
16k
The SEO identity crisis: Don't let AI make you average
varn
0
43
Documentation Writing (for coders)
carmenintech
77
5.2k
Rebuilding a faster, lazier Slack
samanthasiow
85
9.3k
Transcript
1 2025.09.20 Tokyo.R #119 Rで学ぶデータハンドリング入門 - 雑然データから整然データへ -
2 今日のテーマ • Rでのデータ操作例(tidyverse) • データ分析に役立つデータ整理術 整然データ(tidy data)という考え方
3 例:応募者の選考データ 雑然データ.csv 整然データ.csv
4 雑然データ.csv • 一行に一人の応募者 • 変数「選考段階」の値である一次、二次が列として存在 一見わかりやすく感じる
5 整然データ.csv • 応募者NOと選考段階でユニーク
6 整然データは扱いやすい(1) データを読み込む
7 整然データは扱いやすい(2) 一次・二次ごとの合否を簡単に集計できる!
8 整然データは扱いやすい(3) 通過人数だけを抽出
9 整然データは扱いやすい(4) 選考段階で並べ替え
10 整然データは扱いやすい(5) 上の行の件数を取得
11 整然データは扱いやすい(6) 選考段階が三次、四次と増えてもコードはそのまま!
12 雑然データは扱いにくい(1) 選考段階ごとにコード追加が必要
13 雑然データは扱いにくい(2) 選考段階ごとにコード追加が必要
14 雑然データは扱いにくい(3) 選考段階ごとにコード追加が必要
15 雑然データは扱いにくい(4) 選考段階が増えるたびにコード追加が必要
16 雑然データを整然データに変換 雑然データ.csv pivot_longer
17 変換できたら後は同じ
18 整然データの定義 1.各変数は列に 2.各観測は行に 3.各観測単位は1テーブルに 4.各値はセルに
19 定義の確認(雑然データ.csv) • 1つの変数(選考段階)が複数の列(一次、二次)に割れている→NG • 1つの行に複数の観測(一次の結果、二次の結果)が入っている→NG
20 定義の確認(整然データ.csv) • 変数=列 • 観測=行 整然データの定義を満たしている
21 定義の確認(各観測は1テーブルに) 1.ひとつのテーブルに種類の違う観測が入っては ならない 2.同じ種類の観測が複数のテーブルにまたがって はならない
22 定義の確認(各観測は1テーブルに) ひとつのテーブルに種類の違う観測が入ってはならない • 応募者名は「応募者」という単位の観測 • 選考段階や合否結果は「選考」という単位の観測 本来は「応募者」テーブルと「選考」テーブルに分けるべき
23 定義の確認(各観測は1テーブルに) ひとつのテーブルに種類の違う観測が入ってはならない • 応募者テーブル:応募者NOをキーとして応募者の情報をまとめる • 選考テーブル:応募者NOと選考段階をキーにして合否を記録する 分ける 選考 応募者
選考データに応募者の情報 観測単位が違うものは別のテーブルにしておくことで、矛盾を防ぎ、管理が楽になる
24 定義の確認(各観測は1テーブルに) なぜテーブルを分けるのか • 応募者名を選考テーブルの各行に書いてしまう と誤って違う名前が入る可能性がある。 • 応募者の名前変更があった場合に全ての行を 修正しなければならない。
25 定義の確認(各観測は1テーブルに) 1月応募.csv 2月応募.csv 3月応募.csv つなげる 同じ種類の観測が複数のテーブルにまたがってはならない
26 定義の確認(各値はセルに) 悪い例 • 「面接者」カラムに「伊藤、山本」のように複数の名前 • 分析するとき、「誰が面接したのか」を集計するのが難しい
27 定義の確認(各値はセルに) よい例 • 「選考」テーブルと「面接者」テーブルに分ける • 「面接者」テーブルは一行に一面接者 分ける 面接者 選考
まとめ • 雑然データは処理が大変 • 整然データにすればコードが単純に、データ分析が楽に なる 「雑然データだから苦労しているのかも」と考えてみよう 28