Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
マツコの知らない「数学」の世界
Search
h.crane
December 26, 2019
Technology
0
370
マツコの知らない「数学」の世界
マツコの知らない「数学」の世界
エンジニアとして知っておきたい計算量O(n)のお話
h.crane
December 26, 2019
Tweet
Share
More Decks by h.crane
See All by h.crane
Getting started with controlling LEGO using Swift
hcrane
1
1.1k
Swift 5.9 と C++ の互換性
hcrane
1
720
Live on iOSDC2023
hcrane
4
1.3k
自販機で1000円を使い切りたいんじゃ!
hcrane
0
140
Vision.framework - 商品画像からのテキスト検出と並列化実装への試み
hcrane
1
770
DevRel/Japan 2023 - 1つの事業部だけで行う DevRel とは
hcrane
0
1k
R2-D2をiOSで動かす
hcrane
2
3.1k
iOSDC2022 - SwiftUI in UIKit で開発する世界
hcrane
6
7.1k
iOSDC2022 - iPadOSDC Japan 2022
hcrane
2
4k
Other Decks in Technology
See All in Technology
SpannerとAurora DSQLの同時実行制御の違いに想いを馳せる
masakikato5
0
550
バクラクでのSystem Risk Records導入による変化と改善の取り組み/Changes and Improvement Initiatives Resulting from the Implementation of System Risk Records
taddy_919
0
200
みんなで育てるNewsPicksのSLO
troter
4
1.1k
これからクラウドエンジニアになるために本当に必要なスキル 5選
hiyanger
1
460
Tirez profit de Messenger pour améliorer votre architecture
tucksaun
1
120
Go の analysis パッケージで自作するリファクタリングツール
kworkdev
PRO
1
370
Explainable Software Engineering in the Public Sector
avandeursen
0
340
PostgreSQL Unconference #52 pg_tde
nori_shinoda
0
180
17年のQA経験が導いたスクラムマスターへの道 / 17 Years in QA to Scrum Master
toma_sm
0
350
DevOps文化を育むQA 〜カルチャーバブルを生み出す戦略〜 / 20250317 Atsushi Funahashi
shift_evolve
1
110
Compose MultiplatformにおけるiOSネイティブ実装のベストプラクティス
enomotok
1
200
初めてのPostgreSQLメジャーバージョンアップ
kkato1
0
370
Featured
See All Featured
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.6k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
120k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
28
2k
The Invisible Side of Design
smashingmag
299
50k
Practical Orchestrator
shlominoach
186
10k
How to Think Like a Performance Engineer
csswizardry
22
1.5k
Become a Pro
speakerdeck
PRO
27
5.2k
Git: the NoSQL Database
bkeepers
PRO
429
65k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
46
2.4k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
30
1.1k
Transcript
マツコの知らない「数学」の世界 〜 エンジニアとして知っておきたい計算量O(n)のお話 〜 Hiromu Tsuruta
こんな記事がバズってました
動的計画法によるDVDのディスク分割の改善
何でバズってるの?
アルゴリズムを使って実際に業務改善をしている!
・家族の「写真や動画」をDVDにして注文できる機能がある ・「写真や動画」は1枚に収まらないので複数のディスクに分割する ⇨ 「月ごとに分けて各ディスクに入れていく」というアルゴリズム 【前提】
1月の思い出 データベース 2月の思い出 3月の思い出 12月の思い出 ・・・・・ 12枚 【現状】
ディスクの枚数をもっと減らせないのか ⇨ ユーザーから問い合わせが寄せられていた 【課題】
どうやって減らす?
月ごとではなく最適化して入れる!
1月の思い出 データベース 2月の思い出 3月の思い出 12月の思い出 ・・・・・ 12枚よりは少ない 【解決例】
最適化する = データを分割する
ディスクの枚数課題を解決!
ではありません
ただ、分割すれば良いと言うものではない!
なんで?
データ分割の計算量を意識する必要がある
None
ユーザー サーバー ① アルバムの注文 ④ 注文枚数を表示 サーバー/データ ② 枚数の計算を実行 ③
計算結果を返す 〜 注文フロー 〜
計算が遅いとユーザーの画面反映も遅れる
UXの低下・機会損失
ユーザー サーバー ① アルバムの注文 ④ 注文枚数を表示 サーバー/データ ② 枚数の計算を実行 ③
計算結果を返す 〜 注文フロー 〜 この部分をなんとかしたい!
計算量を抑えました
O(MN²) から O(MN log N) まで減らし 最終的に O(NM²) までになりました (1
≦ N ≦ 10⁵, 1 ≦ M ≦ 50)
ん?
O とは?
ランダウの記号 ギリシア文字の O(オミクロン)を用いて表される 大文字をビッグオー、小文字をスモールオーと呼んだりもする 数学においてはオーダーという呼び方をする 計算量を大雑把に評価する(見積もる)際に使用する example O(n) :オーダーのエヌ O(log
n) :オーダーのログエヌ
具体例を見てみよう!
Example.1 「世界のナベアツ」
None
ナベアツは線形探索しているだけ!
線形探索とは?
・検索アルゴリズムの1つ ・リストや配列に入ったデータの検索を行う ・先頭から順に比較を行い、見つかれば終了する
「世界のナベアツ」パターン - 3の倍数 or 3が付くなら true - それ以外は false を必ず1回ずつ確認を行っている
and 40までしか探索しない
「世界のナベアツ」= O(40)
「世界のナベアツ」が 100 まで探索する場合は?
「世界のナベアツ」= O(100)
「世界のナベアツ」が n まで探索する場合は?
「世界のナベアツ」= O(n)
話を戻すと、、 結局、計算量は減ってるの? (ここから普通に数学なのでつまらなかったらすいません)
O(MN²) ⇨ O(MN log N) ⇨ O(NM²) 先の話では、、 計算量を以下の順番で減らした O(NM²)
≦ O(MN log N) ≦ O(MN²) (1 ≦ N ≦ 10⁵, 1 ≦ M ≦ 50)
全然わからん、、から 具体的な数字に落とし込んでみよう!
取りうる最大値を代入する
1 ≦ N ≦ 10⁵ 1 ≦ M ≦ 50
1 ≦ M ≦ 50 1 ≦ M ≦ 10
* 5 1 ≦ M ≦ 10 * 5 ≦ 10 * 10 Mの範囲をNに合わせて拡張する 上記のことから 1 ≦ M ≦ 10²
O(NM²) ≦ O(MN log N) ≦ O(MN²) O(MN²) ≦ O(10²
* (10⁵)²) ≦ O(10² * 10¹⁰) ≦ O(10¹²) O(MN log N) ≦ O(10² * 10⁵ * log10⁵) ≦ O(10⁷ * 10⁵) ≦ O(10¹²) O(NM²) ≦ O(10⁵ * (10²)²) ≦ O(10⁵ * 10⁴) ≦ O(10⁹) N = 10⁵, M = 10²
O(NM²) ≦ O(MN log N) ≦ O(MN²) O(10⁹) ≦ O(10¹²)
≦ O(10¹²) 10⁹ ≦ 10¹² ≦ 10¹²
確かに計算上は計算量が小さくなっている!
どうやって小さくしているの? というのはバズっていた記事にある アルゴリズムを読んでください (この資料はあくまでもO(オーダー)について説明に焦点を当てています)
fin