Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
マツコの知らない「数学」の世界
Search
h.crane
December 26, 2019
Technology
0
310
マツコの知らない「数学」の世界
マツコの知らない「数学」の世界
エンジニアとして知っておきたい計算量O(n)のお話
h.crane
December 26, 2019
Tweet
Share
More Decks by h.crane
See All by h.crane
Getting started with controlling LEGO using Swift
hcrane
1
920
Swift 5.9 と C++ の互換性
hcrane
1
550
Live on iOSDC2023
hcrane
4
1.2k
自販機で1000円を使い切りたいんじゃ!
hcrane
0
100
Vision.framework - 商品画像からのテキスト検出と並列化実装への試み
hcrane
1
640
DevRel/Japan 2023 - 1つの事業部だけで行う DevRel とは
hcrane
0
920
R2-D2をiOSで動かす
hcrane
2
2.4k
iOSDC2022 - SwiftUI in UIKit で開発する世界
hcrane
6
6.6k
iOSDC2022 - iPadOSDC Japan 2022
hcrane
2
3.7k
Other Decks in Technology
See All in Technology
ガバメントクラウド単独利用方式におけるIaC活用
techniczna
3
260
【若手エンジニア応援LT会】AWSで繋がり、共に成長! ~コミュニティ活動と新人教育への挑戦~
kazushi_ohata
0
170
MAMを軸とした動画ハンドリングにおけるAI活用前提の整備と次世代ビジョン / abema-ai-mam
cyberagentdevelopers
PRO
1
110
なんで、私がAWS Heroに!? 〜社外の広い世界に一歩踏み出そう〜
minorun365
PRO
6
1.1k
GitHub Universe: Evaluating RAG apps in GitHub Actions
pamelafox
0
170
新R25、乃木坂46 Mobileなどのファンビジネスを支えるマルチテナンシーなプラットフォームの全体像 / cam-multi-cloud
cyberagentdevelopers
PRO
1
130
【若手エンジニア応援LT会】AWS Security Hubの活用に苦労した話
kazushi_ohata
0
160
30万人が利用するチャットをFirebase Realtime DatabaseからActionCableへ移行する方法
ryosk7
5
330
「最高のチューニング」をしないために / hack@delta 24.10
fujiwara3
21
3.4k
AWS CDKでデータリストアの運用、どのように設計する?~Aurora・EFSの実践事例を紹介~/aws-cdk-data-restore-aurora-efs
mhrtech
4
630
Shift-from-React-to-Vue
calm1205
3
1.2k
独自ツール開発でスタジオ撮影をDX!「VLS(Virtual LED Studio)」 / dx-studio-vls
cyberagentdevelopers
PRO
1
170
Featured
See All Featured
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
107
49k
[RailsConf 2023] Rails as a piece of cake
palkan
51
4.9k
5 minutes of I Can Smell Your CMS
philhawksworth
202
19k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Testing 201, or: Great Expectations
jmmastey
38
7k
Designing for humans not robots
tammielis
249
25k
Making the Leap to Tech Lead
cromwellryan
132
8.9k
What's new in Ruby 2.0
geeforr
342
31k
Fashionably flexible responsive web design (full day workshop)
malarkey
404
65k
The Cult of Friendly URLs
andyhume
78
6k
BBQ
matthewcrist
85
9.3k
Building Better People: How to give real-time feedback that sticks.
wjessup
363
19k
Transcript
マツコの知らない「数学」の世界 〜 エンジニアとして知っておきたい計算量O(n)のお話 〜 Hiromu Tsuruta
こんな記事がバズってました
動的計画法によるDVDのディスク分割の改善
何でバズってるの?
アルゴリズムを使って実際に業務改善をしている!
・家族の「写真や動画」をDVDにして注文できる機能がある ・「写真や動画」は1枚に収まらないので複数のディスクに分割する ⇨ 「月ごとに分けて各ディスクに入れていく」というアルゴリズム 【前提】
1月の思い出 データベース 2月の思い出 3月の思い出 12月の思い出 ・・・・・ 12枚 【現状】
ディスクの枚数をもっと減らせないのか ⇨ ユーザーから問い合わせが寄せられていた 【課題】
どうやって減らす?
月ごとではなく最適化して入れる!
1月の思い出 データベース 2月の思い出 3月の思い出 12月の思い出 ・・・・・ 12枚よりは少ない 【解決例】
最適化する = データを分割する
ディスクの枚数課題を解決!
ではありません
ただ、分割すれば良いと言うものではない!
なんで?
データ分割の計算量を意識する必要がある
None
ユーザー サーバー ① アルバムの注文 ④ 注文枚数を表示 サーバー/データ ② 枚数の計算を実行 ③
計算結果を返す 〜 注文フロー 〜
計算が遅いとユーザーの画面反映も遅れる
UXの低下・機会損失
ユーザー サーバー ① アルバムの注文 ④ 注文枚数を表示 サーバー/データ ② 枚数の計算を実行 ③
計算結果を返す 〜 注文フロー 〜 この部分をなんとかしたい!
計算量を抑えました
O(MN²) から O(MN log N) まで減らし 最終的に O(NM²) までになりました (1
≦ N ≦ 10⁵, 1 ≦ M ≦ 50)
ん?
O とは?
ランダウの記号 ギリシア文字の O(オミクロン)を用いて表される 大文字をビッグオー、小文字をスモールオーと呼んだりもする 数学においてはオーダーという呼び方をする 計算量を大雑把に評価する(見積もる)際に使用する example O(n) :オーダーのエヌ O(log
n) :オーダーのログエヌ
具体例を見てみよう!
Example.1 「世界のナベアツ」
None
ナベアツは線形探索しているだけ!
線形探索とは?
・検索アルゴリズムの1つ ・リストや配列に入ったデータの検索を行う ・先頭から順に比較を行い、見つかれば終了する
「世界のナベアツ」パターン - 3の倍数 or 3が付くなら true - それ以外は false を必ず1回ずつ確認を行っている
and 40までしか探索しない
「世界のナベアツ」= O(40)
「世界のナベアツ」が 100 まで探索する場合は?
「世界のナベアツ」= O(100)
「世界のナベアツ」が n まで探索する場合は?
「世界のナベアツ」= O(n)
話を戻すと、、 結局、計算量は減ってるの? (ここから普通に数学なのでつまらなかったらすいません)
O(MN²) ⇨ O(MN log N) ⇨ O(NM²) 先の話では、、 計算量を以下の順番で減らした O(NM²)
≦ O(MN log N) ≦ O(MN²) (1 ≦ N ≦ 10⁵, 1 ≦ M ≦ 50)
全然わからん、、から 具体的な数字に落とし込んでみよう!
取りうる最大値を代入する
1 ≦ N ≦ 10⁵ 1 ≦ M ≦ 50
1 ≦ M ≦ 50 1 ≦ M ≦ 10
* 5 1 ≦ M ≦ 10 * 5 ≦ 10 * 10 Mの範囲をNに合わせて拡張する 上記のことから 1 ≦ M ≦ 10²
O(NM²) ≦ O(MN log N) ≦ O(MN²) O(MN²) ≦ O(10²
* (10⁵)²) ≦ O(10² * 10¹⁰) ≦ O(10¹²) O(MN log N) ≦ O(10² * 10⁵ * log10⁵) ≦ O(10⁷ * 10⁵) ≦ O(10¹²) O(NM²) ≦ O(10⁵ * (10²)²) ≦ O(10⁵ * 10⁴) ≦ O(10⁹) N = 10⁵, M = 10²
O(NM²) ≦ O(MN log N) ≦ O(MN²) O(10⁹) ≦ O(10¹²)
≦ O(10¹²) 10⁹ ≦ 10¹² ≦ 10¹²
確かに計算上は計算量が小さくなっている!
どうやって小さくしているの? というのはバズっていた記事にある アルゴリズムを読んでください (この資料はあくまでもO(オーダー)について説明に焦点を当てています)
fin