Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
リンゴゲームと貧富の差 / Origin of the disparity of wealth
Search
kaityo256
PRO
January 18, 2024
Education
13
14k
リンゴゲームと貧富の差 / Origin of the disparity of wealth
リンゴゲームと貧富の差
kaityo256
PRO
January 18, 2024
Tweet
Share
More Decks by kaityo256
See All by kaityo256
デバッグの話 / Debugging for Beginners
kaityo256
PRO
9
1.1k
ビット演算の話 / Let's play with bit operations
kaityo256
PRO
4
320
GNU Makeの使い方 / How to use GNU Make
kaityo256
PRO
15
5k
制限ボルツマンマシンの話 / Introduction of RBM
kaityo256
PRO
3
950
論文の読み方 / How to survey
kaityo256
PRO
220
160k
渡辺研Slackの使い方 / Slack Local Rule
kaityo256
PRO
9
8.7k
時間の矢について / Time's arrow
kaityo256
PRO
12
17k
t-SNEをざっくりと理解 / Overview of t-SNE
kaityo256
PRO
2
1.5k
未定義動作でFizz Buzz / Undefined Fizz Buzz
kaityo256
PRO
1
1.1k
Other Decks in Education
See All in Education
Nodiレクチャー 「CGと数学」講義資料 2024/11/19
masatatsu
1
280
保育士チームが実践している連続的な観察と多面的な観察を共有するための振り返り / Reflection to share “continuous and multifaceted observations” as practiced by a team of childcare professionals
psj59129
0
2.5k
オープンソース防災教育ARアプリの開発と地域防災での活用
nro2daisuke
0
240
Diseño de estrategia de analítica del aprendizaje en tu centro educativo.
tecuribarri
0
100
CSS3 and Responsive Web Design - Lecture 5 - Web Technologies (1019888BNR)
signer
PRO
1
2.5k
Utiliser Linkedin pour améliorer son personal branding
martine
0
120
Zero to Hero
takesection
0
130
Medicare 101 for 2025
robinlee
PRO
0
400
ワクワク発見資料
akenohoshi
0
150
Генезис казарменной архитектуры
pnuslide
0
170
Web Search and SEO - Lecture 10 - Web Technologies (1019888BNR)
signer
PRO
2
2.5k
新人研修の課題と未来を考える
natsukokanda1225
0
740
Featured
See All Featured
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Designing Experiences People Love
moore
139
23k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
192
16k
The Cult of Friendly URLs
andyhume
78
6.1k
Optimising Largest Contentful Paint
csswizardry
33
3k
Rebuilding a faster, lazier Slack
samanthasiow
79
8.8k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
173
51k
Making Projects Easy
brettharned
116
6k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Typedesign – Prime Four
hannesfritz
40
2.5k
Gamification - CAS2011
davidbonilla
80
5.1k
Transcript
1 30 慶應義塾大学理工学部物理情報工学科 渡辺宙志 2024年1月18日 研究室ミーティング リンゴゲームと貧富の差
2 30 貧富の差とは? 世の中には金持ちと貧乏人がいる これは能力の差のせいだろうか? それとも単なる運だろうか?
3 30 リンゴゲーム (1) 一人一つずつリンゴを持つ (2) 提供者と受領者をランダムに選び、提供者か ら受領者にリンゴを一つ渡す (リンゴを持って いなければ何もしない)
「やりとり」を十分繰り返したらリンゴの数はどうなるか?
4 30 10人の場合 持 っ て い る リ ン
ゴ の 数 背番号 ※ 持っているリンゴの数が多い順に並べた
5 30 100人の場合 持 っ て い る リ ン
ゴ の 数 背番号 ※ 持っているリンゴの数が多い順に並べた
6 30 1000人の場合 持 っ て い る リ ン
ゴ の 数 背番号 ※ 持っているリンゴの数が多い順に並べた 半分以上の人がリンゴを持っていない リンゴを9個持っている人
7 30 貧富の差 最初は全員リンゴを一つずつ持っていたのに 「持てる者」「持たざる者」が生まれた
8 30 N=2の場合 1番の人 2番の人 確率1/2で1番から2番へ、確率1/2で2番から1番へリンゴを渡す
9 30 N=2の場合 状態は以下の3種類 1番が2つとも持っている 2人が1つずつ持っている 2番が2つとも持っている
10 30 マルコフ遷移図 1/2 1/2 1/2 1/2 1/2 1/2
11 30 マルコフ連鎖 𝑝1 𝑡 𝑝2 𝑡 𝑝3 𝑡 1番が2つとも持っている確率
2人が1つずつ持っている確率 2番が2つとも持っている確率 tステップ目に・・・
12 30 マルコフ連鎖 𝑝1 𝑡+1 = 1 2 𝑝1 𝑡
+ 1 2 𝑝2 𝑡 𝑝2 𝑡+1 = 1 2 𝑝1 𝑡 + 1 2 𝑝3 𝑡 𝑝3 𝑡+1 = 1 2 𝑝2 𝑡 + 1 2 𝑝3 𝑡 1/2 1/2 1/2 1/2 1/2 1/2
13 30 マルコフ遷移 Ԧ 𝑝𝑡+1 = 𝑀 Ԧ 𝑝𝑡 と表すと
𝑀 = 1/2 1/2 0 1/2 0 1/2 0 1/2 1/2 定常状態があるなら Ԧ 𝑝∞ = 𝑀 Ԧ 𝑝∞ Ԧ 𝑝∞ は𝑀の固有値1に対応する固有ベクトル Ԧ 𝑝∞ = 1/3 1/3 1/3
14 30 定常状態 = = Ԧ 𝑝∞ = 1/3 1/3
1/3 すべてのミクロな状態が等確率で実現する
15 30 N=3 誰かが3つ独占している状態 x 3 誰かが2つ、誰かが1つ持っている状態 x 6 全員が1つずつ持っている状態
x 1 状態が10個あり、10状態のマルコフ遷移になる →面倒くさい マルコフ行列全体を考えずに定常状態を調べたい
16 30 詳細つり合い 一般のマルコフ遷移図の、ある2つの状態間の遷移だけに注目する
17 30 詳細つり合い A B 𝑃(𝐴 → 𝐵) 𝑃(𝐵 →
𝐴) 𝜋(𝐴) 𝜋(𝐵) 𝜋(𝐴) 状態Aにいる確率 𝜋(𝐵) 状態Bにいる確率 𝑃(𝐴 → 𝐵) 状態AからBに遷移する確率 𝑃(𝐵 → 𝐴) 状態BからAに遷移する確率
18 30 詳細つり合い 𝑃(𝐴 → 𝐵) 𝑃(𝐵 → 𝐴) 𝜋(𝐴)
A国の人口 𝜋(𝐵) B国の人口 𝑃(𝐴 → 𝐵) 毎年、A国からB国に移住する割合 𝑃(𝐵 → 𝐴) 毎年、B国からA国に移住する割合
19 30 詳細つり合い 𝜋(𝐴)𝑃(𝐴 → 𝐵) 毎年、A国からB国に移住する人数 𝜋(𝐵)𝑃(𝐵 → 𝐴)
毎年、B国からA国に移住する人数 定常状態(人口が変わらない)なら 𝜋 𝐴 𝑃 𝐴 → 𝐵 = 𝜋 𝐵 𝑃 𝐵 → 𝐴
20 30 詳細つり合い A B 𝑃(𝐴 → 𝐵) 𝑃(𝐵 →
𝐴) 𝜋(𝐴) 𝜋(𝐵) 定常状態において以下が成り立つ 𝜋 𝐴 𝜋 𝐵 = 𝑃 𝐵 → 𝐴 𝑃 𝐴 → 𝐵 任意の2状態間の遷移確率がわかれば 定常状態の確率の比が求まる
21 30 N=3の場合 提供者に3番が選ばれ、受領者が1番である確率(1/6) 提供者に1番が選ばれ、受領者が3番である確率(1/6) リンゴゲームは、任意の遷移可能な2状態間の遷移確率は等しい 逆過程
22 30 一般のNの場合 𝜋 𝑖 𝜋 𝑗 = 𝑃 𝑗
→ 𝑖 𝑃 𝑗 → 𝑖 = 1 ある2状態𝑖, 𝑗について 𝑃 𝑗 → 𝑖 = 𝑃 𝑖 → 𝑗 定常状態は ∴ 𝜋 𝑖 = 𝜋 𝑗 任意の状態𝑖, 𝑗について成り立つので 𝜋 1 = 𝜋 2 = 𝜋 3 = ⋯ すべてのミクロな状態の実現確率は等しい 等重率の原理
23 30 N=3 すべてのミクロな状態が等しい確率で実現する =状態数に確率が比例する 誰かが3つ独占している状態 x 3 誰かが2つ、誰かが1つ持っている状態 x
6 全員が1つずつ持っている状態 x 1 ↑この状態が一番実現確率が高い
24 30 一般のNの場合 全員平等な世界(状態数1) ・・・ 富を誰かが全て独占(状態数N) ・・・ どこか中間に最も実現確率の高い世界
25 30 一般のNの場合 𝑓𝑘 リンゴをk個持っている人の数 𝑁 リンゴの総数と人数 総人口 𝑘
𝑁 𝑓𝑘 = 𝑁 リンゴの総数 𝑘 𝑁 𝑘𝑓𝑘 = 𝑁 上記の条件の元でエントロピーを最大化 𝑆 = 𝑘 𝑁 𝑓𝑘 log 𝑓𝑘
26 30 一般のNの場合 kに関して連続極限をとる 𝑓𝑘 → 𝑓(𝑥) න 𝑓𝑑𝑥 =
𝑁 𝑘 𝑁 𝑓𝑘 = 𝑁 𝑘 𝑁 𝑘𝑓𝑘 = 𝑁 න 𝑥𝑓𝑑𝑥 = 𝑁 制約条件
27 30 一般のNの場合 𝐹 = න 𝛽𝑥𝑓 + 𝑓log 𝑓
+ 𝜆𝑓 𝑑𝑥 ラグランジュの未定定数法 න 𝑓𝑑𝑥 = 𝑁 න 𝑥𝑓𝑑𝑥 = 𝑁 リンゴの総数に関する制限を記述する ラグランジュの未定定数 確率の保存を記述する ラグランジュの未定定数
28 30 変分原理 𝐹 = න 𝛽𝑥𝑓 + 𝑓log 𝑓
+ 𝜆𝑓 𝑑𝑥 𝛿𝐹 𝛿𝑓 = 0 𝑓 = 𝑍−1exp −𝛽𝑥 𝑍 ≡ exp 𝜆 + 1 = න exp(−𝛽𝑥) 𝑑𝑥 カノニカル分布が実現する ただし𝑍は分配関数 𝛽 = 1, 𝑍 = 1/𝑁 制約条件より
29 30 N=10の場合 𝑓 = 𝑁exp −𝑥 持っているリンゴの数 人 数
の 期 待 値
30 30 まとめ 現実のこの世界は・・・? • リンゴゲームはランダムに選んだ二人でリンゴ(財産)をやり とりするゲーム • ミクロにはすべての状態が等確率で出現する →等重率の原理
• マクロには、富の独占が起きる →貧富の差 • 全く公平なルールで平等な初期条件から開始したにも関わら ず、最終的には貧富の差が生まれる →誰が富むかはただの運? • リンゴをエネルギーとみなすと粒子がエネルギーを互いにや り取りする物理系と等価となり、カノニカル分布が実現する