Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Text-to-SQLをLangSmithで評価
Search
西岡 賢一郎 (Kenichiro Nishioka)
July 26, 2024
Business
0
230
Text-to-SQLをLangSmithで評価
機械学習の社会実装勉強会第37回 (
https://machine-learning-workshop.connpass.com/event/324630/
) の発表資料です。
西岡 賢一郎 (Kenichiro Nishioka)
July 26, 2024
Tweet
Share
More Decks by 西岡 賢一郎 (Kenichiro Nishioka)
See All by 西岡 賢一郎 (Kenichiro Nishioka)
MCPが変えるAIとの協働
knishioka
0
23
LangFlowではじめるRAG・マルチエージェントシステム構築
knishioka
0
88
DeepSeekを使ったローカルLLM構築
knishioka
0
160
業務ツールをAIエージェントとつなぐ - Composio
knishioka
0
210
LangGraphを使ったHuman in the loop
knishioka
0
250
AIシステムの品質と成功率を向上させるReflection
knishioka
0
46
LangGraph Templatesによる効率的なワークフロー構築
knishioka
0
150
AIエージェントの開発に特化した統合開発環境 LangGraph Studio
knishioka
0
190
LangGraphを用いたAIアプリケーションにおけるメモリ永続化の実践
knishioka
1
530
Other Decks in Business
See All in Business
日本トライスタイル採用説明資料
yamauguchishunta
0
230
Sales Marker Culture Book(English)
salesmarker
PRO
2
4.5k
ソニックガーデン会社説明(エンジニア向け)
kuranuki
0
420
FastAccounting会社資料_202504
fahrteam
0
2.4k
ITエンジニアのためのコーポレートファイナンス入門シリーズ! #3 財務分析の基本
tkhresk
2
260
家族アルバム みてね 事業紹介 / Our Business
familyalbum
4
34k
Crisp Code コーポレート・サービス紹介 | Corporate & Services Introduction
so_kotani
0
180
提案のレベルを上げる #QiitaConference
konifar
26
9.1k
採用ピッチ(2025年4月2日更新)
canvas_recruit
1
1.1k
営業AIエージェント「アポドリ」のつくりかた
ikeyatsu
7
3.2k
「壁を突破するための変革マネジメント」 ご紹介資料
itpreneurs
0
250
Clear Inc. / we are hiring
clear_inc
0
32k
Featured
See All Featured
4 Signs Your Business is Dying
shpigford
183
22k
Building Applications with DynamoDB
mza
94
6.3k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Optimising Largest Contentful Paint
csswizardry
36
3.2k
Building Adaptive Systems
keathley
41
2.5k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Why Our Code Smells
bkeepers
PRO
336
57k
Thoughts on Productivity
jonyablonski
69
4.6k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
34
2.2k
Building Flexible Design Systems
yeseniaperezcruz
329
38k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
Adopting Sorbet at Scale
ufuk
76
9.3k
Transcript
Text-to-SQLをLangSmithで評価 2024/07/27 第37回勉強会
自己紹介 • 名前: 西岡 賢一郎 ◦ Twitter: @ken_nishi ◦ note:
https://note.com/kenichiro ◦ YouTube: 【経営xデータサイエンスx開発】西岡 賢一郎のチャンネル (https://www.youtube.com/channel/UCpiskjqLv1AJg64jFCQIyBg) • 経歴 ◦ 東京大学で位置予測アルゴリズムを研究し博士 (学術) を取得 ◦ 東京大学の博士課程在学中にデータサイエンスをもとにしたサービスを提供する株式会社ト ライディアを設立 ◦ トライディアを別のIT会社に売却し、CTOとして3年半務め、2021年10月末にCTOを退職 ◦ CDPのスタートアップ (Sr. CSM)・株式会社データインフォームド (CEO)・株式会社ディース タッツ (CTO) ◦ 自社および他社のプロダクト開発チーム・データサイエンスチームの立ち上げ経験
Text-to-SQLの背景と必要性
Text-to-SQLとは • 自然言語の質問やコマンドをSQLクエリに変換する技術 • 例: "30歳以上のユーザーの平均年齢は?" → "SELECT AVG(age) FROM
users WHERE age >= 30;" • Text-to-SQLの仕組み ◦ 自然言語理解 (NLU): ▪ ユーザーが入力した自然言語の質問や要求を解析して、意図を理解します。 ◦ 文脈と構造の抽出: ▪ 質問の文脈や構造を抽出し、どのデータベースのテーブルやカラムが関係して いるかを特定します。 ◦ SQLクエリ生成: ▪ 抽出された情報を基に、適切なSQLクエリを生成します。 ◦ 実行と結果の表示: ▪ 生成されたSQLクエリをデータベースに対して実行し、その結果をユーザーに 返します。
なぜText-to-SQLが必要か • データベースへのアクセシビリティ向上 ◦ SQL非専門家でもデータ分析が可能に ◦ ビジネスユーザーが直接データにアクセス可能 • 開発効率の向上 ◦
繰り返し行われるクエリ作成の自動化 ◦ プロトタイピングの迅速化 • 自然言語インターフェースの実現 ◦ チャットボットやAIアシスタントへの統合 ◦ よりユーザーフレンドリーなデータ探索ツールの 開発 データ抽出依頼 データ抽出 Text-to SQLで データ抽出
Text-to-SQLの評価方法
評価指標の例 1. 正確性 (Correctness) ◦ 生成されたSQLが意図した結果を返すか 2. 効率性 (Efficiency) ◦
生成されたSQLが最適化されているか 3. 可読性 (Readability) ◦ 生成されたSQLが人間にとって理解しやすいか 4. 実行精度 (Execution Accuracy) ◦ 実行結果が期待される結果と一致するか
LangSmithを使ったText-to-SQL評価のデモ
LangSmithの概要 LLMアプリケーション開発でよく使われるLangChainのサー ビスである「LangSmith」は、LLMを楽に評価できる機能を 提供している。 • Evaluatorの設定 ◦ コードを書かずにEvaluatorを設定し、データ セットに紐づけられる •
PlayGround ◦ プログラムを書かずにプロンプトやモデルの設 定をテスト • 中間ステップの評価 ◦ RAGパイプラインなどの中間ステップを詳細に 評価 • 標準Evaluatorの利用: ◦ カスタムコードを書くことなく、標準の Evaluatorを使用 • Annotationの利用 ◦ 実行結果に注釈を追加し、詳細なフィードバッ クを提供
デモ 評価プロセス 1. 評価対象のText-to-SQL modelの定義 2. 評価用データセットの作成 3. カスタム評価器の設定 4.
評価の実行と結果の分析 デモの主要ポイント • SQLiteデータベースの使用 • LangChainのSQLエージェントの活用 • カスタムLLM評価器の実装 • 効率性スコアの計算 • LangSmithでの評価実行と結果の可視化
まとめ • Text-to-SQLはデータアクセシビリティと開発効率を向上 • 多面的な評価が重要: 正確性、効率性、可読性、実行精度 • LangSmithを使用することで、包括的かつ効率的な評価が可能 • 継続的な改善と最適化のためのツールとしてのLangSmithが便利