Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Deep Dive into Momento with LangChain
Search
Kazuki Maeda
June 22, 2023
Technology
1
340
Deep Dive into Momento with LangChain
もめんと Meet-up in June #2
Kazuki Maeda
June 22, 2023
Tweet
Share
More Decks by Kazuki Maeda
See All by Kazuki Maeda
生成AIを用いた 新しい学びの体験を 提供するまでの道のり
kzkmaeda
0
160
生成AIによって変わる世界 -可能性とリスクについて考える-
kzkmaeda
2
200
新しいことを組織ではじめる、そしてつづける
kzkmaeda
5
840
20240824_JAWS_PANKRATION_2024
kzkmaeda
0
61
20240416_devopsdaystokyo
kzkmaeda
1
400
20240321_生成AI時代のDevOps
kzkmaeda
2
1.1k
20240222_LangChain_ver0.1.0_LCEL
kzkmaeda
4
390
20240201_クラウド利用料を 半額にするために取り組んだ10+のコト
kzkmaeda
4
7.3k
20231027_Bedrock勉強会
kzkmaeda
3
1.3k
Other Decks in Technology
See All in Technology
#TRG24 / David Cuartielles / Post Open Source
tarugoconf
0
580
データ基盤におけるIaCの重要性とその運用
mtpooh
4
520
dbtを中心にして組織のアジリティとガバナンスのトレードオンを考えてみた
gappy50
0
270
メールヘッダーを見てみよう
hinono
0
110
Building Scalable Backend Services with Firebase
wisdommatt
0
110
深層学習と3Dキャプチャ・3Dモデル生成(土木学会応用力学委員会 応用数理・AIセミナー)
pfn
PRO
0
460
AWSの生成AIサービス Amazon Bedrock入門!(2025年1月版)
minorun365
PRO
7
470
[IBM TechXchange Dojo]Watson Discoveryとwatsonx.aiでRAGを実現!座学①
siyuanzh09
0
110
When Windows Meets Kubernetes…
pichuang
0
300
商品レコメンドでのexplicit negative feedbackの活用
alpicola
2
360
機械学習を「社会実装」するということ 2025年版 / Social Implementation of Machine Learning 2025 Version
moepy_stats
5
1.1k
AWSマルチアカウント統制環境のすゝめ / 20250115 Mitsutoshi Matsuo
shift_evolve
0
110
Featured
See All Featured
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
3
180
Java REST API Framework Comparison - PWX 2021
mraible
28
8.3k
What's in a price? How to price your products and services
michaelherold
244
12k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
Music & Morning Musume
bryan
46
6.3k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Building Better People: How to give real-time feedback that sticks.
wjessup
366
19k
The Cost Of JavaScript in 2023
addyosmani
46
7.2k
Reflections from 52 weeks, 52 projects
jeffersonlam
348
20k
Optimising Largest Contentful Paint
csswizardry
33
3k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
A Tale of Four Properties
chriscoyier
157
23k
Transcript
Deep Dive into Momento with LangChain もめんと Meet-up in June
#2 kzk_maeda
Kazuki Maeda @kzk_maeda SRE @atama plus AWS Community Builders AWS
Startup Community Core Member 7+ years of experience of AWS Like: Lambda / Step Functions / Glue / MWAA / Athena 最近はGoogle CloudとLLM系を勉強中 自己紹介
agenda Momento with LangChainを触ってみる Momento with LangChainのコードを追ってみる 今後の期待
agenda Momento with LangChainを触ってみる Momento with LangChainのコードを追ってみる 今後の期待
Momento Cacheとは • Serverless Cache Service • Web上でセットアップして、SDKを埋め込むだけで クラスターセットアップなど不要で利用開始できる •
キャパシティの管理、プロビジョニング、パフォーマンスモニタリングなど オペレーション業務からの解放
LangChainとは • LLM(大規模言語モデル)を利用したアプリケーション開発に利用できる ライブラリ • 各種LLM APIの抽象化、独自データのLoader、ツール群の組み合わせなどの 様々な機能が提供されている • バージョンアップ頻度が異常
なぜLangChainとMomento? https://twitter.com/LangChainAI/status/1662138670332395520?s=20
なぜLangChainとMomento? https://python.langchain.com/docs/ecosystem/integrations/momento
なぜLangChainとMomento? https://www.gomomento.com/blog/momento-is-now-fully-integrated-into-the-langchain-ecosystem
LangChainでMomentoが使える場所 • LLM Cache • Conversation Memory
LLM Cache 通常LangChainでは、都度OpenAIなどのLLMサービスとやりとりをしますが
LLM Cache Cacheが効いていると、InterceptしてCacheからResponseを返します
LLM Cache 実装 数行のコードで実装可能
LLM Cache クエリ時間比較 同一のPromptであれば実行時間を90%以上低減
LLM Cache Token消費量比較 CacheがAnswerを返すのでOpenAIのToken消費量は0
LLM Cache 時間もコストも削減が見込める!!
Conversation Memory 通常、LangChainからLLMへのRequestは状態を持たないので独立実行 →以前の会話内容をLangChainは記憶しない
Conversation Memory ConversationChainのMemoryとしてMomentoを活用し、会話の流れを作れる
Conversation Memory 実装 こちらもシンプルなコードで実装可能
agenda Momento with LangChainを触ってみる Momento with LangChainのコードを追ってみる 今後の期待
注 ここからLangChainのコードを眺めていきますが、 冒頭で紹介したように、LangChainの更新頻度は異常です。 以降のコードは version 0.0.207 のものとなっております。 また、説明の都合でコードの一部のみ抜粋して表示します。
LLM Cache 中で何が行われているのか追ってみましょう
LLM Cache llm_cache が有効であるとcacheに問い合わせる機構が LLMの基底クラスに定義されている
LLM Cache PromptとLLMのparameterをhash化して str castしたtextをKeyにして、Momentoに格納
LLM Cache こんな感じでCacheが衝突しないようになっている
Conversation Memory 中で何か行われているのか追ってみましょう
Conversation Memory ConversationChainの中でmemoryをセットできる
Conversation Memory デフォルトで message_store: 文字列をprefixに付与して session_id を追加したtextをKeyにしている
Conversation Memory plain textをKeyのprefixに追加することで、 CacheのKey(hash化された文字列)との衝突を 抑制している??という推測(中の人教えてください)
ここまで追ってみて • ライブラリを利用する側はシンプルに使えるようにいろんな処理が抽象化されてい る一方、実装側では衝突を防ぐための仕組みが入っていたりと工夫されていること がわかった • 実際にデバッグしてCache Keyを特定してコンソールから確認することができ、楽し かった
agenda Momento with LangChainを触ってみる Momento with LangChainのコードを追ってみる 今後の期待
今後の期待 • Cache機構の拡大 ◦ (LangChainの対応が必要かもしれませんが) Embeddingの生成など、他にもTokenを利用し、時 間がかかる処理があるので、そこでも Cacheが効かせられると嬉しいなと思った • Vector
Storeとしての利用 ◦ 時限式で消えるVector Storeという用途がLLMアプリケーションの中ではそこそこ求められるケース がありそう ◦ Vector Storeが消えていたら新規に Embedding生成してStoreすることでデータ鮮度を高く保つとか ◦ Momentoでそれが実現できると管理が楽で嬉しいなと思った
今後の期待 • 特にVector Storeとして使えると、こういう仕組みを作る時に使い勝手が 非常にいい(気がします)
Thank you