Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AIと人間の共創開発!OSSで試行錯誤した開発スタイル
Search
mae616
October 16, 2025
Programming
2
840
AIと人間の共創開発!OSSで試行錯誤した開発スタイル
Claude Code Meetup Tokyo(LT) 2025.10.17 金
OSS:
https://github.com/mae616/ai-template
mae616
October 16, 2025
Tweet
Share
More Decks by mae616
See All by mae616
AIの話
mae616
0
17
TypeScriptの思想
mae616
0
50
WAKE Career 主催「生成AI×社会課題ハッカソン」中間発表
mae616
0
21
創作系生成AIのプロンプト遊び
mae616
1
140
小さなプロジェクトの開発
mae616
0
54
AIとお友達になりたい
mae616
1
89
エンジニアや人生の中での私の気づき 3つ
mae616
2
17k
Other Decks in Programming
See All in Programming
Pythonに漸進的に型をつける
nealle
1
140
Claude Agent SDK を使ってみよう
hyshu
0
1.4k
Amazon Verified Permissions実践入門 〜Cedar活用とAppSync導入事例/Practical Introduction to Amazon Verified Permissions
fossamagna
2
110
Kotlinで実装するCPU/GPU 「協調的」パフォーマンス管理
matuyuhi
0
130
AI時代に必須!状況言語化スキル / ai-context-verbalization
minodriven
2
260
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
640
ALL CODE BASE ARE BELONG TO STUDY
uzulla
28
6.9k
社会人になっても趣味開発を続けたい! / traPavilion
mazrean
1
120
品質ワークショップをやってみた
nealle
0
800
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
110
Reactive Thinking with Signals and the Resource API
manfredsteyer
PRO
0
120
Google Opalで使える37のライブラリ
mickey_kubo
3
180
Featured
See All Featured
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3k
RailsConf 2023
tenderlove
30
1.3k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
A Modern Web Designer's Workflow
chriscoyier
697
190k
Designing for humans not robots
tammielis
254
26k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
2.9k
How to train your dragon (web standard)
notwaldorf
97
6.3k
Designing for Performance
lara
610
69k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Stop Working from a Prison Cell
hatefulcrawdad
272
21k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
54k
Transcript
AIと人間の共創開発! OSSで試行錯誤した開発スタイル mae616 Claude Code Meetup Tokyo (LT) 2025.10.17
自己紹介 mae616 (まえ) • フリーランス準備中 (休職中のWebエンジニア) • エンジニア歴 8年 (SE
6.5年、Web 1.5年、講師の副業 1年) コミュニティ運営 • ゆるっと もくもく会 for Women • お題でプログラミング: おだいで.dev 開発で遊ぼう! ...他 直近の予定 • 技書博#12 頒布 東葛.devの合作本に寄稿 X: @mae616_
LTの概要 1. 海外のYouTubeを見てコンテキスト・エンジニアリングを知りました。 2. 試しにやってみたらちょっとやり方を自分に合ったものに改善したくなりました。 3. 改善して、せっかくなのでAIプロンプトのOSSとして公開しました。 4. その試行錯誤の知見を共有します。 https://github.com/mae616/ai-template
Project AI Prompt Template
関わる知識 • コンテキスト・エンジニアリング • AIでアジャイル開発を行う (※) • AIでエンジニアの知識をペルソナ化する (※) ※
海外では“AI-Paired Programming”や“Agile Ai Driven Development”などのキーワードとし て議論されている内容
持って帰って欲しいこと 多くの人は「AIをそのまま使って」疲れてしまっています。 けれど、自分の思考をAIに組み込めば、ただの道具ではなく“共に開発する相棒”になります。 本LTでは、その実感を持ち帰っていただければ嬉しいです。
目次 • コンテキスト・エンジニアリングについて(軽く) • ワンパス実装とアジャイル的アプローチの違い • OSSで試したClaude Code活用の具体例 • 実現したペルソナ
• AIと人の役割分担 • 品質と状況 • 「効率化」ではなく「楽になる」AIとの共創開発の視点 • まとめ
コンテキスト・エンジニアリングについて バイブコーディング(Vibe Coding)& プロンプト・エンジニアリング • 「ノリ」や「雰囲気」を大事にした即興的なやりとり。 • ふわっとした指示を投げて、AIにコードを書かせながら、その場の流れで調整する。 コンテキスト・エンジニアリング(Context Engineering)
• 目的・背景・制約・ゴールを一緒に渡して、AIに「なぜそれをやるか」まで理解させる。 • さらに、構造化(役割・手順・前提条件を整理)してLLMに渡す。 • そうすることで、AIが「部分最適なコード」じゃなく「エンジニアの意図に沿った全体的な設 計」を出しやすくなる。 • 再現性や品質が安定して、チーム開発的な流れにも耐えられる。
ワンパス実装とアジャイル的アプローチの違い 要件定義 設計 タスク の作成 AIによる実装 人の確認 要件定義 スプリント の作成
タスク の作成 AIによる実装 人の確認と AIによる修正 タスク の作成 AIによる実装 人の確認と AIによる修正 ※ ワンパス = On-shot, Single-pass など 「一度の実行で完成度の高い成果物を目指す」 通常のコンテキスト・エンジニアリング(ワンパス実装) = AIを実行して一晩放っておけばアプリが出来上がる ある意味「ウォーターフォール」的、制作物を確認できるのは最後 「要件定義→設計」とコンテキストを用意するのも大変 コンテキスト・エンジニアリングをアジャイル開発的に改良 細かく確認、試行ができる、調整ができる
OSSで試したClaude Code活用の具体例
実現したペルソナ Claude Code カスタムコマンド (作業モード) 自分のエンジニアの知識を 反映したペルソナ • スプリント &
タスクシステムでの反復開発 要件定義またはタスクチケットから スプリント・タスクの作成 → 反復した実装 • トラブルシューティング機能 バグの起票 → 現状確認 → 改修策をWebで調査 → 改修 開発の補助機能 • マニュアル機能 設定マニュアル作成 → ステップバイステップでのガイド機能 ※ インフラ等をMCPでなく自分で作成したかっただけの機能 • 暫定コードの禁止 • SOLID原則に基づいた コード • 最小で正確な実装 • 公式ドキュメントに準拠 • Docsコメントを付与 • ドメイン意図を説明した コメント • ハマった時はサンプルを 実装して確認する ... など タスク処理 バグ処理 エンジニアの自分の普段やってる手順や知識をAIにペルソナ化した
AIと人の役割分担 要件定義 スプリント の作成 タスク の作成 AIによる実装 人の確認と AIによる修正 AIと人で要件定義
• 目的や機能 • 選択技術スタック • アーキテクチャ • 何か修正が必要な時に 新規タスクとするか バグ起票するかを判断 • 内容のコンテキストを入力 計画や実装時に 変な方向にいってないか確認 (一応) 人の役割: 方向性の決定、要件の整理、品質の担保 (ディレクター的なの) AI の役割: 実装の自動化、パターンの学習、反復作業の効率化
品質と状況 (1) OSS のコード(ts) (2) vibe codingでAIが書いたコード(js) (3) 自分が簡易的に書いたコード(ts) 債務が複数あって読みにくい
比較的似ているが、 (1) OSSのコードの方が SOLID原則などに適切に沿っていて読みやすい
<ChatGPTの簡易比較> ただ、OSSは一挙動ずつに既存コードベースの 分析が入るから(人間もやってるため)、 規模の大きいシステムでは現実的でないと思える
「効率化」ではなく「楽になる」AIとの 共創開発の視点
気軽に開発できる サブモニターとか必要だったのが、パソコン一つでリビングとかで開発できるようになれる AIコーディングは画面の情報量が多いので サブモニターが必要だった...
不具合調査の依頼が来た時の不安が減る 「バグ原因わかるかな...」と不安があったのが、「まぁ、多分なんとかなるだろう」になれる
まとめ
• AIはゲームチェンジャー • ただ、既存のこれまで人々が積み重ねた理論や実績を捨てる必要はない • AIと既存の理論や実績をフィットさせることで新しい価値が生まれる Claude Codeに限った話ではないが... 「既存の知識」と「AI」を切り離して考えるのではなく、 両者をうまくフィットさせていくことで、
「より持続可能なソフトウェアの在り方」を見出し、 それを次世代へ繋いでいくこと、そうした視点が、 これからますます大切になるのではないか と、 感じます
ご清聴ありがとうございます