Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
oku-slide-20221115
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Makito Oku
November 15, 2022
Education
0
400
oku-slide-20221115
データサイエンスの世界
「和漢薬と未病」
奥 牧人 (和漢研)
2022/11/15
Makito Oku
November 15, 2022
Tweet
Share
More Decks by Makito Oku
See All by Makito Oku
oku-slide-20260209
okumakito
0
43
oku-slide-20240802
okumakito
0
200
oku-slide-20231129
okumakito
0
170
oku-slide-20230827
okumakito
0
190
oku-slide-20230213
okumakito
0
280
oku-slide-20221212
okumakito
0
130
oku-slide-20221129
okumakito
0
190
oku-slide-20220820
okumakito
0
440
oku-slide-stat1-1
okumakito
0
340
Other Decks in Education
See All in Education
JAPAN AI CUP Prediction Tutorial
upura
1
570
AIは若者の成長機会を奪うのか?
frievea
0
180
滑空スポーツ講習会2025(実技講習)EMFT講習 実施要領/JSA EMFT 2025 procedure
jsaseminar
0
100
HCI Research Methods - Lecture 7 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.3k
【洋書和訳:さよならを待つふたりのために】第2章 ガン特典と実存的フリースロー
yaginumatti
0
230
卒論の書き方 / Happy Writing
kaityo256
PRO
54
28k
HTML5 and the Open Web Platform - Lecture 3 - Web Technologies (1019888BNR)
signer
PRO
2
3.2k
1021
cbtlibrary
0
400
Web 2.0 Patterns and Technologies - Lecture 8 - Web Technologies (1019888BNR)
signer
PRO
0
3k
1202
cbtlibrary
0
200
学習指導要領と解説に基づく学習内容の構造化の試み / Course of study Commentary LOD JAET 2025
masao
0
120
栃木にいても「だいじ」だっぺ〜! 栃木&全国アジャイルコミュニティへの参加・運営の魅力
sasakendayo
1
140
Featured
See All Featured
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.9k
The Limits of Empathy - UXLibs8
cassininazir
1
210
Visual Storytelling: How to be a Superhuman Communicator
reverentgeek
2
430
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.4k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
280
Darren the Foodie - Storyboard
khoart
PRO
2
2.4k
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
240
Amusing Abliteration
ianozsvald
0
98
Designing for Timeless Needs
cassininazir
0
130
How to Ace a Technical Interview
jacobian
281
24k
Visualization
eitanlees
150
17k
Transcript
データサイエンスの世界 「和漢薬と未病」 奥 牧人 (和漢研) 2022/11/15 1 / 37
発表の流れ 1. 和漢薬とは? 2. 和漢薬とデータサイエンス 3. 未病とは? 4. 未病とデータサイエンス 5.
まとめ 2 / 37
発表の流れ 1. 和漢薬とは? 2. 和漢薬とデータサイエンス 3. 未病とは? 4. 未病とデータサイエンス 5.
まとめ 3 / 37
クイズ 「漢方」という呼び方は、ある国の医学が江戸時代に入ってきて、 それと区別するために使われ始めました。その国はどこでしょう? 1. アメリカ 2. オランダ 3. ドイツ 4.
イギリス 4 / 37
漢方薬と生薬と和漢薬 漢方薬 とは、基本的に2つ以上の 生薬 を組み合わせたもの 日本や中国で使う漢方薬や生薬のことを 和漢薬 と呼びます。 5 /
37
西洋薬と漢方薬 西洋薬 漢方薬 合成して作る 天然物を使用 単一の化合物 多くの化合物を含む 局所的 全体的 エビデンスに基づく
(主に)経験に基づく 6 / 37
是非覚えて欲しいこと 西洋薬と漢方薬にはそれぞれ利点と欠点があります。 両方を 上手に使い分けること が大事です。 7 / 37
漢方特有の概念 漢方には 気血水 や 陰陽虚実 などの特有の概念があります。 8 / 37
発表の流れ 1. 和漢薬とは? 2. 和漢薬とデータサイエンス 3. 未病とは? 4. 未病とデータサイエンス 5.
まとめ 9 / 37
クイズ 富山大学にある民族薬物資料館には、様々な生薬の標本が 保存されています。その数は幾つでしょう? A. 万未満 B. 万以上 万未満 C. 万以上
万未満 D. 万以上 1 1 2 2 3 3 10 / 37
漢方の情報を含むデータベース KEGG KNApSAcK Metabolomics.jp 伝統医薬データベース (和漢研が管理) 11 / 37
和漢研のデータベース 1. 伝統医薬データベース 2. 民族薬物データベース 3. 和漢薬Wikiデータベース 4. KampoDB 5.
証類本草データベース 12 / 37
民族薬物データベース 民族薬物資料館に保存されている生薬のデータベース 和漢薬だけでも462種類、8378標本 https://www.inm.u-toyama.ac.jp/mmmw/ 13 / 37
人参の例 生薬名「人参」で検索すると、209標本がヒット https://www.inm.u-toyama.ac.jp/mmmw/dbs.html 14 / 37
KampoDB コンピュータで計算した結果をまとめたデータベース 名前と内容が 合ってなくね︖ 15 / 37
結合シミュレーション 和漢薬に含まれる化合物と、その相手となるタンパク質の結合 16 / 37
発表の流れ 1. 和漢薬とは? 2. 和漢薬とデータサイエンス 3. 未病とは? 4. 未病とデータサイエンス 5.
まとめ 17 / 37
クイズ 疲れて弱っている人の気力と体力を補うために よく使われる漢方薬はどれでしょう? 1. 葛根湯 2. 芍薬甘草湯 3. 人参養栄湯 4.
五苓散 18 / 37
病気に対する考え方 19 / 37
漢方医学における分類 20 / 37
未病の診断? 21 / 37
未病の例1 22 / 37
未病の例2 23 / 37
未病の例3 24 / 37
未病の例4 25 / 37
未病の例5 26 / 37
未病かどうか微妙な例 27 / 37
発表の流れ 1. 和漢薬とは? 2. 和漢薬とデータサイエンス 3. 未病とは? 4. 未病とデータサイエンス 5.
まとめ 28 / 37
クイズ 沢山のデータがあるとき、似たもの同士をまとめて 複数のグループに分ける解析を何と呼ぶでしょう? 1. 回帰分析 2. 分散分析 3. 主成分分析 4.
クラスタリング分析 29 / 37
自覚症状のデータ解析 未病では頭痛や悪寒など様々な 自覚症状 が現れます。 未病のときの自覚症状のデータは入手が困難です。 代わりに病気のときの自覚症状のデータを解析してみました。 30 / 37
使用したデータ 藤平健 著「漢方処方類方鑑別便覧」のデータを使用 主な32種類の自覚症状に関する102件のデータを取得 31 / 37
自覚症状のクラスタリング 32 / 37
7つの主なグループ 汗をかきやすい、口・のどが渇く、むくみ、尿利減少 四肢の疼痛・こわばり・麻痺、関節のはれ・痛み、悪寒・発熱、 頭痛・頭重 せき・たん、呼吸困難、くしゃみ・鼻水・鼻づまり、肩こり 感情が不安定、イライラする、不眠、めまい・立ちくらみ、 動悸・息切れ 月経異常、皮膚の荒れ、のぼせやすい・顔がほてる、便秘 下痢、みぞおちがつかえている感じ、吐き気または吐く、胃が もたれる、みぞおちのあたりが痛む、胃が痛む、食欲不振
体がだるい・疲れやすい、顔色が悪い・貧血、手足が冷える、 腹痛 33 / 37
未病チェックシート 神奈川県が 未病チェックシート というのを作っています。 https://me-byo.com/ 先ほどの7つとは違いますが、未病を8タイプに分けています。 22項目の質問に答えると自分の未病のタイプが分かります。 34 / 37
発表の流れ 1. 和漢薬とは? 2. 和漢薬とデータサイエンス 3. 未病とは? 4. 未病とデータサイエンス 5.
まとめ 35 / 37
まとめ 和漢薬と未病について簡単に説明しました。 和漢薬に関するデータベース、未病に関するデータ解析結果を 紹介しました。 和漢薬も未病も、データサイエンス と ちゃんと関係しています。 36 / 37
ご清聴どうもありがとうございました! 37 / 37