Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SSII2024 [OS2] 大規模言語モデルと基盤モデルの射程
Search
画像センシングシンポジウム
PRO
June 12, 2024
Research
0
560
SSII2024 [OS2] 大規模言語モデルと基盤モデルの射程
画像センシングシンポジウム
PRO
June 12, 2024
Tweet
Share
More Decks by 画像センシングシンポジウム
See All by 画像センシングシンポジウム
SSII2024 [OS1] 自動運転における 重要技術とトレンド紹介
ssii
PRO
0
790
SSII2024 [PD] SSIIアナザーストーリーズ
ssii
PRO
0
230
SSII2024 [OS1] 画像生成技術の発展: 過去10年の軌跡と未来への展望
ssii
PRO
3
2.2k
SSII2024 [OS1] 現場の課題を解決する ロボットラーニング
ssii
PRO
0
670
SSII2024 [OS1] 画像認識におけるモデル・データの共進化
ssii
PRO
0
580
SSII2024 [OS1] 研究紹介100連発(オープンニング)
ssii
PRO
0
560
SSII2024 [OS2] 画像、その先へ 〜モーション解析への誘い〜
ssii
PRO
1
1.3k
SSII2024 [OS2] 大規模言語モデルとVision & Languageのこれから
ssii
PRO
5
1.5k
SSII2024 [OS2] GPT-4Vで画像認識は終わるのか(オープニング)
ssii
PRO
0
850
Other Decks in Research
See All in Research
機械学習による言語パフォーマンスの評価
langstat
6
810
移動ビッグデータに基づく地理情報の埋め込みベクトル化
tam1110
0
160
CUNY DHI_Lightning Talks_2024
digitalfellow
0
130
精度を無視しない推薦多様化の評価指標
kuri8ive
1
290
ECCV2024読み会: Minimalist Vision with Freeform Pixels
hsmtta
1
300
【NLPコロキウム】Stepwise Alignment for Constrained Language Model Policy Optimization (NeurIPS 2024)
akifumi_wachi
2
230
第 2 部 11 章「大規模言語モデルの研究開発から実運用に向けて」に向けて / MLOps Book Chapter 11
upura
0
430
湯村研究室の紹介2024 / yumulab2024
yumulab
0
350
ミニ四駆AI用制御装置の事例紹介
aks3g
0
180
渋谷Well-beingアンケート調査結果
shibuyasmartcityassociation
0
300
Neural Fieldの紹介
nnchiba
1
410
最近のVisual Odometryと Depth Estimation
sgk
1
310
Featured
See All Featured
Git: the NoSQL Database
bkeepers
PRO
427
64k
Code Review Best Practice
trishagee
65
17k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
665
120k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
191
16k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
A Philosophy of Restraint
colly
203
16k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.2k
Imperfection Machines: The Place of Print at Facebook
scottboms
266
13k
Facilitating Awesome Meetings
lara
50
6.1k
How to Think Like a Performance Engineer
csswizardry
22
1.2k
Transcript
SSII2024 大規模言語モデルと基盤モデルの射程 2024.6.13 大谷 まゆ(サイバーエージェント)
2 GPT-4Vで画像認識は終わるのか SSII2024 サイバーエージェント AI Lab 大谷まゆ • コンピュータビジョン研究のための評価方法に興味 •
デザイン制作支援、画像生成 • 経歴 ◦ 2018 – 現職 ◦ 2014 – 2018 修士・博士課程@NAIST
3 GPT-4Vで画像認識は終わるのか SSII2024 コンピュータビジョンの一般的な研究スタイル 手法開発 性能比較 論文が出版されたり プロダクトに採用されたり
4 GPT-4Vで画像認識は終わるのか SSII2024 評価方法はちゃんと役割を果たしている? 性能比較
5 GPT-4Vで画像認識は終わるのか SSII2024 映像要約のベンチマーク調査(CVPR’18) 要約の品質に関係なく評価値が決まるこ とを確認 ベンチマーク調査 ランダム化した要約 参照要約
6 GPT-4Vで画像認識は終わるのか SSII2024 シーン検索のベンチマーク調査 (BMVC’20) データセットに潜む偏りが評価結果に及ぼす 影響を調査 ベンチマーク調査 学習&推論時に映像を使わず SOTAに迫る
スコアが出ることを確認
7 GPT-4Vで画像認識は終わるのか SSII2024 現状技術の限界(の感覚)と評価結果のギャップ ベンチマークの違和感はどこに生じるか データの限界 手法の限界 ドメインシフト、データ量、クラス偏り...etc. 使える教師信号、扱える特徴...etc. 性能の概算:
扱えそうな問題はベンチマークの△△ %ぐらい? 成功率◯◯%
8 GPT-4Vで画像認識は終わるのか SSII2024 視覚言語モデルの限界はどのあたりにあるのか? Vision Encoder LLM Connection Model 『コンピュータを使
う猫』
9 GPT-4Vで画像認識は終わるのか SSII2024 視覚言語モデルの限界はどのあたりにあるのか? Vision Encoder LLM Connection Model 膨大なデータを学習することで強
力な特徴空間を獲得 言語モデルが多様な問題に有効 • 要約 • 翻訳 • 推論を伴う質問応答 • 雑談 • プログラミング • etc. 『a photo of siberian husky』 CLIPのzero-shot classifier https://openai.com/index/clip/
10 GPT-4Vで画像認識は終わるのか SSII2024 視覚言語モデルの限界はどのあたりにあるのか? Vision Encoder LLM Connection Model 膨大なデータを学習することで強
力な特徴空間を獲得 『a photo of siberian husky』 CLIPのzero-shot classifier GPT4 Technical Report 強力な特徴空間の上での様々な操作がで きる可能性 特徴空間が獲得できれば多様な CV課題 が視覚言語モデルの射程に入る?
11 GPT-4Vで画像認識は終わるのか SSII2024 CVに残された課題は? データを集めにくい領域は扱えない→集めれば解決? 様々なモダリティへの対応→同様のアプローチが有効? ImageBind: One Embedding Space
To Bind Them All (CVPR’23)
12 GPT-4Vで画像認識は終わるのか SSII2024 • 多くの画像認識課題がGPT-4V的アプローチの射程圏に入る • 従来のCV問題の本質が「工学的な手法の探索」から「実用的リソース配分」に なる • 多くの課題がCVを卒業し、政治、思想、芸術の領域へ接続してゆく
GPT-4Vで画像認識は終わるのか?