Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
遺伝子発現プロファイルに基づく新しい薬物間相互作用予測法
Search
Y-h. Taguchi
November 26, 2023
Science
0
220
遺伝子発現プロファイルに基づく新しい薬物間相互作用予測法
SIGBIO76で講演
https://www.ipsj.or.jp/kenkyukai/event/bio76.html
2023/11/29
Y-h. Taguchi
November 26, 2023
Tweet
Share
More Decks by Y-h. Taguchi
See All by Y-h. Taguchi
テンソル分解による糖尿病の組織特異的遺伝子発現の統合解析を用いた関連疾患の予測
tagtag
2
170
マウス肝炎ウイルス感染の遺伝子発現へのテンソル分解の適用によるSARS-CoV-2感染関連重要ヒト遺伝子と有効な薬剤の同定
tagtag
0
100
大学のアウトリーチ活動(中央大学学員(OB)会主催学術講演で講演して)
tagtag
1
67
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
0
110
マルチオミクスデータ解析のためのカーネルテンソル分解による新しい特徴選択法
tagtag
1
110
学術講演会中央大学学員会大分支部
tagtag
0
150
学術講演会中央大学学員会いわき支部
tagtag
0
160
テンソル分解を用いた教師なし学習による変数選択法のシングルセルマルチオミックスデータ解析への応用
tagtag
1
160
学術講演会中央大学学員会八王子支部
tagtag
0
310
Other Decks in Science
See All in Science
機械学習 - DBSCAN
trycycle
PRO
0
840
(論文読み)贈り物の交換による地位の競争と社会構造の変化 - 文化人類学への統計物理学的アプローチ -
__ymgc__
1
220
科学で迫る勝敗の法則(名城大学公開講座.2024年10月) / The principle of victory discovered by science (Open lecture in Meijo Univ. 2024)
konakalab
0
320
白金鉱業Meetup Vol.16_数理最適化案件のはじめかた・すすめかた
brainpadpr
3
1.7k
Quelles valorisations des logiciels vers le monde socio-économique dans un contexte de Science Ouverte ?
bluehats
1
350
FRAM - 複雑な社会技術システムの理解と分析
__ymgc__
1
170
小杉考司(専修大学)
kosugitti
2
660
システム数理と応用分野の未来を切り拓くロードマップ・エンターテインメント(スポーツ)への応用 / Applied mathematics for sports entertainment
konakalab
1
320
Machine Learning for Materials (Challenge)
aronwalsh
0
270
私たちのプロダクトにとってのよいテスト/good test for our products
camel_404
0
300
03_草原和博_広島大学大学院人間社会科学研究科教授_デジタル_シティズンシップシティで_新たな_学び__をつくる.pdf
sip3ristex
0
360
Planted Clique Conjectures are Equivalent
nobushimi
0
160
Featured
See All Featured
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
740
Become a Pro
speakerdeck
PRO
28
5.3k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.8k
Product Roadmaps are Hard
iamctodd
PRO
53
11k
Writing Fast Ruby
sferik
628
61k
Building Adaptive Systems
keathley
41
2.6k
Site-Speed That Sticks
csswizardry
6
580
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.4k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
Music & Morning Musume
bryan
47
6.5k
The Cost Of JavaScript in 2023
addyosmani
49
8k
Designing for humans not robots
tammielis
253
25k
Transcript
SIGBIO76 1 遺伝子発現プロファイルに基づく新しい薬物間相互作用予測法 田口 善弘(中央大学) ターキー ターキー(キング・アブドゥルアズィーズ大学)
SIGBIO76 2
SIGBIO76 3 動機: 2剤同時に作用させた場 合の遺伝子発現プロファ イルを主成分分析すると CONVEXなプロファイル になるがこれが2剤相互 作用の効果であるという 論文が結構IFの高い雑
誌(IF=9.3)に出た (2019 2019年11月13日)→ → 大嘘 大嘘 反論論文を書いた
SIGBIO76 4 Taguchi, Yh. Drug candidate identification based on gene
expression of treated cells using tensor decomposition-based unsupervised feature extraction for large-scale data. BMC Bioinformatics 19 (Suppl 13), 388 (2019 2019) 2月4日. 1剤処理でもテンソル分 解するとCONVEX依存は 出る。
SIGBIO76 5 Cell Systemsの論文がでてすぐBMC Bioinfomaticsの論文 を引用して間違いを指摘したが無視されて、European Journal of Pharmaceutical SciencesにCell
Systemsの データを再解析した論文(今回発表)を載せて再度間違いを 指摘したがそのままになっている。 ただし、Cell Systemsの論文の引用は16回しかされてない (BMC Bioinformaticsの方は19回引用)。でもCVに書いて あったらCell Systemsの方が評価高いんでしょうね、きっと(不 公平!)。
SIGBIO76 6 Cell Systems の論文データ:GSE138256 出芽酵母 4剤から全ペアで6ペア。Doseはペアによって 異なるが共通の16Doseを選択
SIGBIO76 7 遺伝子数 Dose ペア 発現量 正規化
SIGBIO76 8 HOSVD(テンソル分解) 遺伝子 依存性 Dose 依存性 ペア 依存性 3
SIGBIO76 9
SIGBIO76 10 HOSVD(PCAも同じだが)は基底の直交性を要求するので 一定値→直線→2次→3次..... となっていくのは数学的に自然で完全にArtifactであり、2剤の 相互作用でCONVEXがでているというのは戯言である
SIGBIO76 11 比較: GSE138256 単剤処理
SIGBIO76 12 x ijk ∈ℝN×14×4 遺伝子数 Dose 薬物 発現量 正規化
SIGBIO76 13 遺伝子 依存性 Dose 依存性 ペア 依存性 3
SIGBIO76 14
SIGBIO76 15 単剤でもCONVEXはでるがなぜか第5,6主成分にしか出な い。単剤処理を扱った我々のBMC Bioinformatics論文では もっと上の成分で出ていた。この結果、Cell Systems論文の 解析では「単剤処理ではCONVEXは出ない」と誤認してし まった可能性がある。 主成分分析ではあまり下の成分までは見ない、あるいは、無
視するというのはありがちである。 うがった見方をするとCell Systemsという高IF誌に通すため にわざと嘘をついたのかもしれない。
SIGBIO76 16 おまけ:テンソル分解する前は単剤処理だとCONVEXじゃな いのか?左:BDH1 右:SSA1 →各遺伝子でもCONVEX
SIGBIO76 17 テンソル分解する前は2剤処理でもCONVEX 左:BDH1 右:SSA1
SIGBIO76 18 結論: Dose依存性がCONVEXであることは2剤相互作用とかでは なく、解析方法が作り出したArtifactであり、単剤処理でも CONVEXは出現する →じゃあCONVEXであることは無意味なのか? →NO。CONVEXである遺伝子を選んで解析することには 当然、意味があるはず。遺伝子の機能的な観点から議論さ れなくてはいけない。
SIGBIO76 19 CONVEX Dose依存性: 2剤処理:l1 =3,4 単剤処理:l1 =5,6 単剤、ペア依存性:l1 =1 (一定値=依存性なし)
2剤処理:l1 =3,4 単剤処理:l1 =5,6
SIGBIO76 20 2剤処理:l3 =4,5,6 単剤処理:l3 =4
SIGBIO76 21 P値をBenjamini-Hochbergで補正し て0.01以下の遺伝子を選ぶとかな りかぶっている。 したがってCONVEX Dose依存性 を示す遺伝子は単剤、2剤処理で かなり共通だと思われる(2剤処 理では2つの薬剤の値を一方を減
らし、他方を増やすように動かす のだから、ある意味当たり前)。
SIGBIO76 22 157遺伝子(2剤処理)をMetascapeにアップロードした結果
SIGBIO76 23 77遺伝子(単剤処理)をMetascapeにアップロードした結果
SIGBIO76 24 まとめ CONVEX Dose依存性は2剤相互作用ではなく、遺伝子の性質 であり、なんからのバイオロジカルなプロセスに関係していると思 われる。