Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データサイエンス業務 最初の一歩
Search
ぶんちん
July 27, 2023
Technology
0
220
データサイエンス業務 最初の一歩
初心者向けに仕事で成果につなげられるようにするためには、どのようにプロジェクトを始めたらよいか紹介
ぶんちん
July 27, 2023
Tweet
Share
More Decks by ぶんちん
See All by ぶんちん
個人計画とプロジェクト遂行の考え方
bunnchinn3
0
31
データ分析イベントデータ説明(VRChatイベントカレンダー)
bunnchinn3
0
72
<事前告知> DS集会データ分析イベント VRChatイベントカレンダー
bunnchinn3
0
64
統計知識と実務のギャップ
bunnchinn3
0
84
製造業における品質不良の要因分析04_ツール選択の考え方
bunnchinn3
0
91
これまでLT振り返り 何が人気の話題?
bunnchinn3
0
80
製造業における品質不良の要因分析03_必要な知識の入手方法
bunnchinn3
0
92
製造業における品質不良の要因分析02_分析着手順の考え方
bunnchinn3
0
98
製造業における品質不良の要因分析01_ゴール設定
bunnchinn3
0
150
Other Decks in Technology
See All in Technology
意思決定を支える検索体験を目指してやってきたこと
hinatades
PRO
0
170
React ABC Questions
hirotomoyamada
0
490
PagerDuty×ポストモーテムで築く障害対応文化/Building a culture of incident response with PagerDuty and postmortems
aeonpeople
1
310
Automatically generating types by running tests
sinsoku
2
3.3k
LiteXとオレオレCPUで作る自作SoC奮闘記
msyksphinz
0
690
AIエージェント開発手法と業務導入のプラクティス
ykosaka
2
1.4k
ブラウザのレガシー・独自機能を愛でる-Firefoxの脆弱性4選- / Browser Crash Club #1
masatokinugawa
1
490
C++26アップデート 2025-03
faithandbrave
0
440
ワールドカフェI /チューターを改良する / World Café I and Improving the Tutors
ks91
PRO
0
120
ドキュメント管理の理想と現実
kazuhe
1
200
AWS Control Towerを 数年運用してきての気づきとこれから/aws-controltower-ops-tips
tadayukinakamura
0
160
SmartHR プロダクトエンジニア求人ガイド_2025 / PdE job guide 2025
smarthr
0
130
Featured
See All Featured
Agile that works and the tools we love
rasmusluckow
328
21k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.4k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
41
2.2k
Making the Leap to Tech Lead
cromwellryan
133
9.2k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
119
51k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
The Language of Interfaces
destraynor
157
25k
Building an army of robots
kneath
304
45k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
12k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
19
1.1k
Transcript
超初心者向け データサイエンス業務 最初の一歩! ぶんちん 2023年7月27日 データサイエンティスト集会 in VRC 1
自己紹介 ぶんちん 複合経営が特徴の企業(製造業)に所属 データ分析担当者だったが。。。 成果獲得を狙うと、 同じことに繰り返しで 飽きた 他者にやらせたら、
成果が増えるのでは 特に非専門家向けのDS教育 2
注意!! 基本的に高度な技術の導入に体制が整い切れていない組織 新規技術の開発ではなく、具体的な経済効果の獲得が私の主目的 多くの案件を根拠にしているものの、あくまで私の経験則 3 泥臭い The
重厚長大 製造業 私はスマートな業界ではなく、 が前提のお話です。
初心者が直面する壁 4 将来のためにデータサイエンスの勉強するぞ! 数学!機械学習!プログラミング!etc 勉強したことが仕事で使えない。 使ってみたけど成果につながらない。 実力不足。もっと勉強しないと! Q.いつになったら 仕事に生かせるの?? 成果を出せるの??
A.不足しているのは技術ではなく、 仕事の進め方(技能)かも?
よくある勘違い 高度な技術は基本的な技術の上位互換! それを活用した仕事ができるようになる! 技術を学べばすぐに実績を積める! 5 現実はそんなに甘くない
基本的な手法 • そこそこの性能 • 使いやすい 少し高度な手法 • 性能向上 • デメリット追加
高度な手法 • さらに性能向上 • さらなるデメリット データサイエンス技術適用の構造 6 高度な手法は基本的な手法の 単純な上位互換ではない! 課題 技術的に高度になるほど扱いづらくなっていく →案件ごとに全体最適のバランス調整が重要 いきなり使いこなせますか?
高度な技術の適用から考えてしまうと。。。 7 オーバースペックになっていない? など どのようなリスクが考えられる? どうやって運用していくの? 現場適用どうするの? モデルの監視はどうするの? 体制は?他部署との調整は? 誤動作した場合の対応ってどうなの?
いくらの効果と費用になるの? たとえ良い結果が得られた場合であっても… 全て解決しないと効果獲得まで至らない 様々な課題の整理・対応も併せて少なくないリソースが必要 →中断判断も難しく、泥沼案件化することが多い
世の中は失敗だらけ 私が考えている失敗の理由 ① 課題設定の失敗 ② 技術課題以外の問題 ➢ 理想論に基づいた目標設定 ➢ 実現不可能な課題の泥沼化
➢ 適用先の業務設計が不十分 8 “POC死”と検索すると、 死屍累々なのがよくわかります 数年前にPoC(Proof of Consept;概念実証)が流行 専門家と協力してAI(≒データサイエンス)を活用したプロジェクトが乱立 そのほとんどが失敗。9割が失敗といわれているが、もっと多いのでは? PoCが黒歴史的ワードに。
ポイント1:適切な課題設定 9 技術(シーズ)から課題を探すな!! 詳細は別の機会に説明します 課題解決ではなく、技術適用が目的になる →成果につながりにくい 私の初心者におすすめの取り組み課題 • 具体的に困っている人がいる •
ちょっとした改善活動
★ポイント2:基本的な手法で具体化 理由 技術課題とは別の部分の課題を明確にしたい 必要とされる”最低スペック”を検討できるよう、比較基準を最速で作りたい 見込みがなければ即撤退できるよう、投入リソースを最小限にしたい 10 手順
1. データの可視化(+α)程度でできる施策を検討 100点中20~50点の成果を最速で実現。定量評価を可能にする 2. 上記のアプローチが原理的に可能か、トライアルを実施。 技術面以外も含む課題を洗い出す。 ここまでできてから、徐々に手法を高度化していきましょう
まとめ 高度な手法を身に着けるだけでは成果につなげられない 適切な課題設定と技術課題以外の対応が超重要 特に初心者は、意図的に簡単な手法から順に検討を進めよう 11 とにかく •
技術課題の明確化 • 技術面以外の課題への対応 そこからスタートです。