Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
同じデータでもP値が変わる話/key_considerations_in_NHST
Search
florets1
September 02, 2023
Science
1
1.3k
同じデータでもP値が変わる話/key_considerations_in_NHST
florets1
September 02, 2023
Tweet
Share
More Decks by florets1
See All by florets1
複式簿記から純資産を排除する/eliminate_net_assets_from_double-entry_bookkeeping
florets1
1
360
カイ二乗検定は何をやっているのか/What_Does_the_Chi-Square_Test_Do
florets1
6
2.2k
直積は便利/direct_product_is_useful
florets1
3
360
butterfly_effect/butterfly_effect_in-house
florets1
1
160
データハンドリング/data_handling
florets1
2
200
カイ二乗検定との遭遇/The_path_to_encountering_the_chi-square_test
florets1
1
270
率の平均を求めてはいけない/Do_Not_Average_Rates
florets1
11
15k
請求と支払を照合する技術/using_full_join_in_r
florets1
2
250
応用セッション_同じデータでもP値が変わる話/key_considerations_in_NHST_2
florets1
1
1.2k
Other Decks in Science
See All in Science
ほたるのひかり/RayTracingCamp10
kugimasa
1
640
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
0
100
はじめてのバックドア基準:あるいは、重回帰分析の偏回帰係数を因果効果の推定値として解釈してよいのか問題
takehikoihayashi
3
1.8k
眼科AIコンテスト2024_特別賞_6位Solution
pon0matsu
0
340
地質研究者が苦労しながら運用する情報公開システムの実例
naito2000
0
160
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
840
Ignite の1年間の軌跡
ktombow
0
110
アナログ計算機『計算尺』を愛でる Midosuji Tech #4/Analog Computing Device Slide Rule now and then
quiver
1
120
重複排除・高速バックアップ・ランサムウェア対策 三拍子そろったExaGrid × Veeam連携セミナー
climbteam
0
240
Iniciativas independentes de divulgação científica: o caso do Movimento #CiteMulheresNegras
taisso
0
1.4k
統計的因果探索: 背景知識とデータにより因果仮説を探索する
sshimizu2006
3
820
機械学習 - 授業概要
trycycle
PRO
0
130
Featured
See All Featured
For a Future-Friendly Web
brad_frost
177
9.7k
Java REST API Framework Comparison - PWX 2021
mraible
31
8.6k
Making the Leap to Tech Lead
cromwellryan
133
9.3k
Designing for Performance
lara
608
69k
Build The Right Thing And Hit Your Dates
maggiecrowley
35
2.7k
Typedesign – Prime Four
hannesfritz
41
2.6k
Art, The Web, and Tiny UX
lynnandtonic
298
20k
Speed Design
sergeychernyshev
29
930
Designing for humans not robots
tammielis
253
25k
Bash Introduction
62gerente
613
210k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
14
1.5k
Building a Modern Day E-commerce SEO Strategy
aleyda
40
7.2k
Transcript
1 2023.09.02 Tokyo.R #108 同じデータでもP値が変わる話
2 統計的仮説検定 同じデータからは同じ検定結果が得られるもの と考えられがちですが 実際には必ずしもその通りではありません。
3 例えば コイン投げをして24回中7回が表になるという単純な データを考えてみましょう。 このようなデータでも、実験の設定や投げる回数の制 約によって、統計的仮説検定の結果が変わることがあ るのです。
4 コインを1回投げる 𝑝 𝑦 𝜃 = 𝜃𝑦(1 − 𝜃)(1−𝑦) 𝜃
= 0.5 ベルヌーイ分布 y=1 は表, y=0 は裏
5 コインをN回投げる 裏裏表表裏裏表裏裏裏裏裏裏裏裏裏表裏裏表表裏裏表 表が出る確率 θ 投げる回数 N 表の回数 z 二項分布
6 統計的仮説検定の流れ 帰無仮説をたてる ↓ 標本分布を計算する ↓ データを観測してP値を求める
7 帰無仮説をたてる ある統計量がある値と等しいということを帰無仮説と して設定します。 例) コインの裏表が出る確率が50%と等しい 平均値が等しい
8 標本分布を計算する 帰無仮説が成り立つ場合にその統計量が従うであろう 確率分布、標本分布を計算します。 例) コインの裏表が出る確率 → 二項分布など 平均値 →
t分布など
9 データを観測してP値を求める 実際に観測された値、もしくはそれ以上に極端な値が 標本分布に占める面積、つまりそのような値が観測さ れる確率(P値)を求めます。
10 P値があらかじめ設定したしきい値(たとえば5%)よ りも小さければ、そもそも帰無仮説が間違っていたの だと結論づけます。 逆に小さくなければ帰無仮説を棄却せず、判断を保留 します。 P値で判断
11 コインを24回投げて7回表が出た このコインは公平か。 データ観測者の意図 コインを24回投げると決めていた。結果として7回表 がでた。
12 標本分布 表が出る確率 θ 投げる回数 N 表の回数 z
13 データを観測 θ = 0.5 N = 24 z =
7 P値 = 0.064 Sample Proportion z/N p(z/N)
14 Rのコード
15 コインを24回投げて7回表が出た このコインは公平か。 データ観測者の意図 7回表が出るまで投げ続けると決めていた。結果として 24回投げた。 ↓ 23回投げた時点で6回表が出ており、24回目では表が 出た。
16 標本分布 N-1回投げた時点でz-1回表が出て N回目は表
17 データを観測 θ = 0.5 z = 7 N =
24 P値 = 0.017 Sample Proportion z/N p(z/N)
18 Rのコード
19 投げる回数N 表が出る回数 z • Nを固定する意図ではP値=0.064(判断を保留) • zを固定する意図ではP値=0.017(帰無仮説を棄却) 同じデータを観測しても、観測者の意図によって 検定結果が変わる!
20 意外にも 観察者の意図やデータ収集の方法が、統計的な結果に 影響を与える可能性があるのです。 このような現象は、統計的な検定の限界や留意すべき 要点を浮き彫りにします。単に数値を見るだけではな く、実験の文脈や条件を正しく理解することの重要性 を示しています。
21 参考書 飯塚修平. ウェブ最適化ではじめる機械学習. オライ リー・ジャパン, 2020 John K. Kruschke.
Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan EDITION 2. Academic Press, 2014