Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Short Introduction for Kysely
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
YUMOTO Michitaka
November 20, 2024
Technology
1
350
Short Introduction for Kysely
Remix Tokyo × Cloudflare Meetup Lighting Talks
https://lu.ma/wv9xzam7
YUMOTO Michitaka
November 20, 2024
Tweet
Share
More Decks by YUMOTO Michitaka
See All by YUMOTO Michitaka
Dive Into Single Fetch
gothedistance
1
230
クラフトマンシップ(職人魂)を湾岸MIDNIGHTから学ぼう / Learn Craftsmanship from Wangan Midnight
gothedistance
0
290
プロ野球をデータモデリングしてみたら沼だった件 / Baseball ERD Modeling to be obsessed
gothedistance
2
820
フロントエンド開発スタイルの変遷と、私がFlutterにハマったわけ
gothedistance
8
14k
ITプロジェクトのはじめ方 / How to work around software project
gothedistance
28
150k
私がITプランナーを志すようになった理由、そして、目指していること / bpstudy142_why_i_wanna_be_a_it_plannner
gothedistance
1
910
ITプランナーの必要性を小一時間問い詰めたい / Why We need IT-Planner.
gothedistance
0
14k
IT企画をちゃんとやりたい#01 ガイダンス資料 / IT Planning do well_01
gothedistance
0
6.5k
bpstudy_127
gothedistance
0
560
Other Decks in Technology
See All in Technology
usermode linux without MMU - fosdem2026 kernel devroom
thehajime
0
160
ZOZOにおけるAI活用の現在 ~開発組織全体での取り組みと試行錯誤~
zozotech
PRO
3
2.1k
AI推進者の視点で見る、Bill OneのAI活用の今
sansantech
PRO
2
310
SREが向き合う大規模リアーキテクチャ 〜信頼性とアジリティの両立〜
zepprix
0
300
いよいよ仕事を奪われそうな波が来たぜ
kazzpapa3
3
320
みんなだいすきALB、NLBの 仕組みから最新機能まで総おさらい / Mastering ALB & NLB: Internal Mechanics and Latest Innovations
kaminashi
0
170
Azure SRE Agent x PagerDutyによる近未来インシデント対応への期待 / The Future of Incident Response: Azure SRE Agent x PagerDuty
aeonpeople
0
260
Kubecon NA 2025: DRA 関連の Recap と社内 GPU 基盤での課題
kevin_namba
0
110
最速で価値を出すための プロダクトエンジニアのツッコミ術
kaacun
1
480
3分でわかる!新機能 AWS Transform custom
sato4mi
1
290
Meshy Proプラン課金した
henjin0
0
170
システムのアラート調査をサポートするAI Agentの紹介/Introduction to an AI Agent for System Alert Investigation
taddy_919
2
1.3k
Featured
See All Featured
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
62
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
75
How to Ace a Technical Interview
jacobian
281
24k
The Limits of Empathy - UXLibs8
cassininazir
1
210
BBQ
matthewcrist
89
10k
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.5k
It's Worth the Effort
3n
188
29k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Chasing Engaging Ingredients in Design
codingconduct
0
110
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
290
Transcript
Kysely ポータブルなTypeScript のクエリビルダ Remix Meetup #2 2024.09.17 @gothedistance Quality Start,inc
Agenda TypeScript とORM Kysely とは Kysely のPros/Cons Quality Start,inc 2
自己紹介 YUMOTO Michitaka 1979 年生まれ、松坂世代 https://x.com/gothedistance Flutter/Remix/Python を主に使っています。 野球が好きで、東京ヤクルトスワローズのファン Quality
Start,inc 3
ORM に疲れた時期が個人的にあった Remix に出会うまではPython を使うことが多く、SQLAlchemy を使った。 SQLAlchemy は重厚長大なORM で、モデル定義もガッツリ、DB とのやり取
りも独自のモデル設計。情報量がとにかく多い。 Remix を書き始めて、自分は 「コンパイルできるSQL 」 が欲しかっただけ なのでは・・・と天啓があった。 ORM のコードの書き方への習熟があっても最後は発行しているSQL のレビ ューになるし、ORM ではなくクエリビルダを使ってみようかな! というわけで、Kysely を使ってみた。 kysely-d1 を使えばCloudFlare D1 が 使える! Quality Start,inc 4
Kysely こんな感じでSQL を組み立ててくれるライブラリ。 selectFrom, innerJoin, where, select などを発行する時に、型推論が効いて いるので自動的にカラムやテーブル名の補完が走ります。 const
result = await db .selectFrom('person') .innerJoin('pet', 'pet.owner_id', 'person.id') .select(['person.id', 'pet.name as pet_name']) .execute() Quality Start,inc 5
Kysely のスキーマ定義(TypeScript の型定義) Prisma のような独自DSL ではなく、TS の型定義でDB スキーマを表現。 ORM で必ずあるリレーション定義がありません!
クエリビルダなんで! 文字数のようなカラムの付帯情報もありません! クエリビルダな(ry export type Pet = { id: Generated<number>; owner_id: Generated<int>; name: Generated<string>; created: Timestamp | null; modified: Timestamp | null; }; Quality Start,inc 6
Kysely の嬉しみ SQL の表現力を最大限にかせる!これが一番! Prisma のようなORM は、リレーション/ スキーマ定義をテコにデータの CRUD を単純化するために、SQL
の表現力を殺している。 Prisma はDB 関数,CTE,EXISTS,CASE, サブクエリなどが使えず、 queryRaw や TypedSQL で対応できるが、SQL の表現力を活かす方法に振り切ってる Kysely には勝てない。 Prisma の場合は1つの関数実行でN 個のクエリが吐かれる事が多く、個人 的に違和感がある。 ORM の設定や仕様に追従/ 習熟して得られるメリットが薄いなら、クエリ ビルダもアリよりのアリです。 Quality Start,inc 7
Kysely に求めてはあかんもの ネストされたデータの戻り値。 order:{detail: [ {item:}]} みたいな。 Kysely は一次元配列しか返しません。 SQL
の発行によってネストしたオブ ジェクトは得られないと同じ。JOIN 先のカラム名が同じ場合は上書きされ る。カラムの選択が必須になると思っていい。 マイグレーションは正直Prisma のほうが楽。モデル定義を持っているから ね。 スキーマのモデルに拡張メソッドを生やすとか、クエリ発行前にHook する イベント仕込むとか、そういうのも持ってないです。ActiveRecord 風なコ ードを書くのは難しい。 ORM との距離のとり方について誰か僕と話そう!! Quality Start,inc 8