Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Short Introduction for Kysely
Search
YUMOTO Michitaka
November 20, 2024
Technology
1
68
Short Introduction for Kysely
Remix Tokyo × Cloudflare Meetup Lighting Talks
https://lu.ma/wv9xzam7
YUMOTO Michitaka
November 20, 2024
Tweet
Share
More Decks by YUMOTO Michitaka
See All by YUMOTO Michitaka
Dive Into Single Fetch
gothedistance
1
120
クラフトマンシップ(職人魂)を湾岸MIDNIGHTから学ぼう / Learn Craftsmanship from Wangan Midnight
gothedistance
0
190
プロ野球をデータモデリングしてみたら沼だった件 / Baseball ERD Modeling to be obsessed
gothedistance
2
650
フロントエンド開発スタイルの変遷と、私がFlutterにハマったわけ
gothedistance
8
11k
ITプロジェクトのはじめ方 / How to work around software project
gothedistance
27
150k
私がITプランナーを志すようになった理由、そして、目指していること / bpstudy142_why_i_wanna_be_a_it_plannner
gothedistance
1
770
ITプランナーの必要性を小一時間問い詰めたい / Why We need IT-Planner.
gothedistance
0
13k
IT企画をちゃんとやりたい#01 ガイダンス資料 / IT Planning do well_01
gothedistance
0
6.5k
bpstudy_127
gothedistance
0
470
Other Decks in Technology
See All in Technology
PHP ユーザのための OpenTelemetry 入門 / phpcon2024-opentelemetry
shin1x1
1
230
Snykで始めるセキュリティ担当者とSREと開発者が楽になる脆弱性対応 / Getting started with Snyk Vulnerability Response
yamaguchitk333
2
190
プロダクト開発を加速させるためのQA文化の築き方 / How to build QA culture to accelerate product development
mii3king
1
270
大幅アップデートされたRagas v0.2をキャッチアップ
os1ma
2
540
Amazon VPC Lattice 最新アップデート紹介 - PrivateLink も似たようなアップデートあったけど違いとは
bigmuramura
0
190
PHPerのための計算量入門/Complexity101 for PHPer
hanhan1978
5
130
DUSt3R, MASt3R, MASt3R-SfM にみる3D基盤モデル
spatial_ai_network
2
150
バクラクのドキュメント解析技術と実データにおける課題 / layerx-ccc-winter-2024
shimacos
2
1.1k
レンジャーシステムズ | 会社紹介(採用ピッチ)
rssytems
0
150
alecthomas/kong はいいぞ / kamakura.go#7
fujiwara3
1
300
統計データで2024年の クラウド・インフラ動向を眺める
ysknsid25
2
850
[Ruby] Develop a Morse Code Learning Gem & Beep from Strings
oguressive
1
170
Featured
See All Featured
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
2k
Rails Girls Zürich Keynote
gr2m
94
13k
Rebuilding a faster, lazier Slack
samanthasiow
79
8.7k
Raft: Consensus for Rubyists
vanstee
137
6.7k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
4 Signs Your Business is Dying
shpigford
181
21k
Adopting Sorbet at Scale
ufuk
73
9.1k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
2
170
Bash Introduction
62gerente
608
210k
A Philosophy of Restraint
colly
203
16k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
45
2.2k
Unsuck your backbone
ammeep
669
57k
Transcript
Kysely ポータブルなTypeScript のクエリビルダ Remix Meetup #2 2024.09.17 @gothedistance Quality Start,inc
Agenda TypeScript とORM Kysely とは Kysely のPros/Cons Quality Start,inc 2
自己紹介 YUMOTO Michitaka 1979 年生まれ、松坂世代 https://x.com/gothedistance Flutter/Remix/Python を主に使っています。 野球が好きで、東京ヤクルトスワローズのファン Quality
Start,inc 3
ORM に疲れた時期が個人的にあった Remix に出会うまではPython を使うことが多く、SQLAlchemy を使った。 SQLAlchemy は重厚長大なORM で、モデル定義もガッツリ、DB とのやり取
りも独自のモデル設計。情報量がとにかく多い。 Remix を書き始めて、自分は 「コンパイルできるSQL 」 が欲しかっただけ なのでは・・・と天啓があった。 ORM のコードの書き方への習熟があっても最後は発行しているSQL のレビ ューになるし、ORM ではなくクエリビルダを使ってみようかな! というわけで、Kysely を使ってみた。 kysely-d1 を使えばCloudFlare D1 が 使える! Quality Start,inc 4
Kysely こんな感じでSQL を組み立ててくれるライブラリ。 selectFrom, innerJoin, where, select などを発行する時に、型推論が効いて いるので自動的にカラムやテーブル名の補完が走ります。 const
result = await db .selectFrom('person') .innerJoin('pet', 'pet.owner_id', 'person.id') .select(['person.id', 'pet.name as pet_name']) .execute() Quality Start,inc 5
Kysely のスキーマ定義(TypeScript の型定義) Prisma のような独自DSL ではなく、TS の型定義でDB スキーマを表現。 ORM で必ずあるリレーション定義がありません!
クエリビルダなんで! 文字数のようなカラムの付帯情報もありません! クエリビルダな(ry export type Pet = { id: Generated<number>; owner_id: Generated<int>; name: Generated<string>; created: Timestamp | null; modified: Timestamp | null; }; Quality Start,inc 6
Kysely の嬉しみ SQL の表現力を最大限にかせる!これが一番! Prisma のようなORM は、リレーション/ スキーマ定義をテコにデータの CRUD を単純化するために、SQL
の表現力を殺している。 Prisma はDB 関数,CTE,EXISTS,CASE, サブクエリなどが使えず、 queryRaw や TypedSQL で対応できるが、SQL の表現力を活かす方法に振り切ってる Kysely には勝てない。 Prisma の場合は1つの関数実行でN 個のクエリが吐かれる事が多く、個人 的に違和感がある。 ORM の設定や仕様に追従/ 習熟して得られるメリットが薄いなら、クエリ ビルダもアリよりのアリです。 Quality Start,inc 7
Kysely に求めてはあかんもの ネストされたデータの戻り値。 order:{detail: [ {item:}]} みたいな。 Kysely は一次元配列しか返しません。 SQL
の発行によってネストしたオブ ジェクトは得られないと同じ。JOIN 先のカラム名が同じ場合は上書きされ る。カラムの選択が必須になると思っていい。 マイグレーションは正直Prisma のほうが楽。モデル定義を持っているから ね。 スキーマのモデルに拡張メソッドを生やすとか、クエリ発行前にHook する イベント仕込むとか、そういうのも持ってないです。ActiveRecord 風なコ ードを書くのは難しい。 ORM との距離のとり方について誰か僕と話そう!! Quality Start,inc 8