Upgrade to Pro — share decks privately, control downloads, hide ads and more …

セミパラメトリック推論の基礎の復習

Avatar for Daisuke Yoneoka Daisuke Yoneoka
November 14, 2023

 セミパラメトリック推論の基礎の復習

Avatar for Daisuke Yoneoka

Daisuke Yoneoka

November 14, 2023
Tweet

More Decks by Daisuke Yoneoka

Other Decks in Research

Transcript

  1. Notations جຊతʹ Tsiatis,2006 ʹै͏. Θ͔Μͳ͔ͬͨΒࣗ෼Ͱௐ΂ͯͶ! ϕΫτϧ΋ߦྻ΋ଠࣈʹͯ͠ͳ͍͚Ͳ, ͦ͜͸ࣗ෼Ͱิ͍ͬͯͩ͘͞. σʔλ͸ i.i.d Ͱ

    Zi = (Zi1, . . . , Zim) ∈ Rm αϯϓϧαΠζ͸ n ਓ. i.e., Z1, . . . , Zn φ(Z) ͸Өڹؔ਺ u(Zi, θ) ͸ਪఆؔ਺ Լ෇͖ࣈͷ eff ͸ (઴ۙ) ༗ޮ (efficient) ͱ͍͏ҙຯ
  2. ηϛύϥϝτϦοΫਪ࿦ͱ͸ʁ Zi ͷີ౓ؔ਺͕ηϛύϥϝτϦοΫϞσϧʹै͏ͱ͸ S = {p(z : θ, η)|θ ∈

    Θ ⊂ Rr, η ∈ H} θ ͸༗ݶ࣍ݩͷڵຯ͋ΔύϥϝλͰ, η ͸ແݶ࣍ݩͷͲ͏Ͱ΋͍͍ύ ϥϝλ (ہ֎ (nuisance) ύϥϝʔλʔ). ηϛύϥϝτϦοΫਪ࿦: ͜ͷ΋ͱͰ θ ͷ࠷ྑͷਪఆྔ (RAL ਪఆ ྔ) Λ΋ͱΊΔ͜ͱ
  3. Өڹؔ਺ θ ͸ͳΜͰ΋͍͍͔Β࠷ྑΛݟ͚ͭΔͱ͍͏ͷ͸ແཧήʔ → Ϋϥε Λݶఆͯͦ͜͠Ͱݟ͚ͭΔ! (౷ܭͰ͸Α͘΍ΔΑͶ) Өڹؔ਺: ਪఆྔ ˆ

    θ ͷӨڹؔ਺ͱ͸, (Ϟʔϝϯτʹ੍໿͕͋Δ) √ n(ˆ θ − θ) = 1 √ n n i=1 φ(Zi, θ, η) + op(1) Λຬͨ͢ϕΫτϧ஋ؔ਺. ˆ θ ͸઴ۙઢܗਪఆྔͱݺͼ n → ∞ ͰҰகੑ ͱ઴ۙਖ਼نੑ͕͋Δ √ n(ˆ θ − θ) → N 0, E[φ(Zi, θ, η)φ(Zi, θ, η)T ] Πϝʔδతʹ͸͋Δσʔλ͕ͲΕ͚ͩਪఆʹӨڹΛ༩͍͑ͯΔ͔Λ දݱͨ͠΋ͷ
  4. ਪఆؔ਺ͱ M ਪఆ ਪఆํఔࣜ n i=1 u(Zi, θ) ਪఆؔ਺ =

    0 ͷղͱͯ͠ಘΒΕΔ΋ͷΛ M ਪఆྔ ͱݺͿ. Α͘ݟΔ score ؔ਺ͳΜ͔΋ίϨ. ͨͩ͠, E[φ(Zi, θ)] = 0 ظ଴஋͸ 0 , E[∥φ(Zi, θ)∥2] < ∞ ෼ࢄతͳ΋ͷ͸ൃࢄ͠ͳ͍ . ͋ͱ΋͏গ͚ͩ͠৚݅͋Δ. Ұகੑͱ઴ۙਖ਼نੑΛ࣋ͭ √ n(ˆ θ − θ) = 1 √ n n i=1 E[ ∂u(Zi, θ) ∂θ ] −1 u(Zi, θ) ͕͜͜Өڹؔ਺ʹͳ͍ͬͯΔ +op(1) → N 0, E[ ∂u(Zi, θ) ∂θ ] −1 E[u(Zi, θ)u(Zi, θ)T ] E[ ∂u(Zi, θ) ∂θ ] −T ] ͜ͷ઴ۙ෼ࢄͷਪఆྔΛαϯυΠονਪఆྔͱݺΜͩΓ͢Δ
  5. RAL ਪఆྔ ઴ۙઢܥਪఆྔ͸ͳΜ͔ྑͦ͞͏ʂͰ΋ super efficiency ͷ໰୊ (Hodges) ͕࢒Δʂ Super efficiency:

    ઴ۙతʹ Cramer-Rao ͷԼݶΑΓ΋ྑ͍΋ͷ͕Ͱ͖ Δ໰୊ͷ͜ͱ ͜ͷ໰୊Λղܾͨ͠ͷ͕ RAL (Regular asymptotic linear) ਪఆྔ. ͦͷਖ਼ଇ৚݅͸ۃݶ෼෍͕ LDGP (local data generating process) ʹґ ଘ͠ͳ͍͜ͱ (ৄ͘͠͸ Tsiatis, 2006) ηϛύϥਪ࿦͸͜ͷ RAL ਪఆྔͷӨڹؔ਺ΛٻΊΔ͜ͱΛߟ͑Δ
  6. Parametric submodel ηϛύϥϝτϦοΫϞσϧ S ͷ֤఺ʹର͠ p(z; θ, η) ∈ Ssub

    ⊂ S Λຬͨ͢ύϥϝτϦοΫϞσϧ Ssub = {p(z; θ, γ)|θ ∈ Θ ⊂ Rr, γ ∈ Γ ⊂ Rs, s ∈ N} ΛύϥϝτϦοΫαϒϞσϧͱݺͿ.
  7. Nuisance tangent space (ہ֎઀ۭؒ) ηϛύϥϝτϦοΫϞσϧ S ͷ֤఺ʹର͠, ύϥϝτϦοΫαϒϞσϧ Ssub ͷہ֎઀ۭؒΛ

    TN θ,γ (Ssub) = {BT sγ(z, θ, γ)|B ∈ Rs} ͱ͢Δ. γ ͸ p(z; θ, η) ʹରԠ͢Δ΋ͷͰ sγ(z, θ, γ) = ∂ ∂γ log p(z; θ, γ) Ͱ ද͞ΕΔ nuisance score ؔ਺. ͜ͷઢܗۭؒ͸͜ͷ nuisance score vector ʹ ΑͬͯுΒΕ͍ͯΔ. ͜ͷͱ͖ TN θ,η (S) = Ssub TN θ,γ (Ssub) Λ S ্ͷ఺ p(z; θ, η) ʹ͓͚Δہ֎઀ۭؒͱΑͿ. ͪͳΈʹ, ಺ ͸಺ଆͷू ߹ʹؔͯ͠ closure ΛͱΔԋࢉࢠ. Note:͜ͷۭؒ͸େ੾Ͱޙʹ, RAL ਪఆྔͷӨڹؔ਺͸͜ͷۭؒʹ௚ަۭͨؒ͠ʹ ଐ͢Δ͜ͱ͕ॏཁʹͳͬͯ͘Δʂ
  8. RAL ਪఆྔͷӨڹؔ਺ͷॏཁͳఆཧ ηϛύϥϝτϦοΫ RAL ਪఆྔ β ͷӨڹؔ਺ φ(Z) ͸ҎԼͷ৚݅Λຬ଍ ͢Δ.

    Corollary1 E[φ(Z)sβ] = E[φ(Z)sT efficient (Z, β0, η0)] = I. ͨͩ͠, s ͸είΞؔ਺Ͱ, sT efficient ͸༗ޮείΞؔ਺ Corollary2 φ(Z) ͸ہ֎઀ۭؒʹ௚ަ͍ͯ͠Δ. ༗ޮӨڹؔ਺͸্ͷ 2 ͭͷ৚݅Λຬͨ͠, ͦͷ෼ࢄߦྻ͸, ޮ཰ݶքΛୡ ੒ͦ͠Ε͸ φeffi(Z, β0, η0) = E[seff (Z, β0, η0)sT eff (Z, β0, η0)] −1 seff (Z, β0, η0)
  9. ηϛύϥ઀ۭؒͷఆཧ ύϥϝτϦοΫαϒϞσϧͷ৔߹ͷ RAL ਪఆྔͷӨڹؔ਺ͱ઀ۭؒͱͷؔ܎͸ Tsiatis, 2006 ͷ Ch4.3 ͋ͨΓΛݟͯͶʂ ఆཧ

    1 RAL ਪఆྔͷӨڹؔ਺͸ {φ(Z) + TN θ,η (S)⊥} ͱ͍͏ۭؒʹؚ·ΕΔ. ͨͩ͠, φ(Z) ͸೚ҙͷ RAL ਪఆྔͷӨڹؔ਺Ͱ, TN θ,η (S)⊥ ͸ηϛύϥϝτϦο Ϋ઀ۭؒͷ௚ަิۭؒ ఆཧ 2 ηϛύϥϝτϦοΫ༗ޮͳਪఆྔ͸, ͦͷӨڹؔ਺͕Ұҙʹ well-defined Ͱܾఆ͞ Ε,φefficient = φ(Z) − {φ(Z)|TN θ,η (S)⊥} ͷཁૉ. ͪͳΈʹ, (h|U) ͸ projection of h ∈ H(಺ੵΛಋೖͨ͠ώϧϕϧτۭؒ) onto the space U (ઢܗۭؒ)
  10. GEE ʹ͍ͭͯͷ Remarks Liang-Zeger ͷ GEE ͷηϛύϥϝτϦοΫϞσϧ (੍໿ϞʔϝϯτϞσϧ: 1 ࣍ͱ

    2 ࣍ͷϞʔϝϯτʹ੍͚ͩ໿Λஔ͍ͨϞσϧ) ͸ҎԼͷಛ௃Λ΋ͭ. ہॴ (઴ۙ༗) ޮਪఆྔ: ෼ࢄؔ਺ͷԾఆ͕ਖ਼͚͠Ε͹, ༗ޮਪఆྔ Robustness: ແݶ࣍ݩͷύϥϝʔλਪఆ͕ඞཁ͕ͩ, ෼ࢄؔ਺Λ misspecify ͨ͠ͱͯ͠΋Ұகੑͱ઴ۙਖ਼نੑ͸อ࣋ GEE ͷຊΛಡΊ͹Θ͔Δ͚Ͳ, Working covariance matrix Λؒҧ͑ͯ ΋༗ޮੑ͸ࣦΘΕΔ͕, ͦͷଞͷ޷·͍͠ੑ࣭ (઴ۙਖ਼نੑͱҰகੑ) ͸อ࣋Ͱ͖Δͬͯ͜ͱ