Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Optunaによる多目的最適化
Search
Yoshihiko Ozaki
June 29, 2021
Research
5
3.6k
Optunaによる多目的最適化
Optuna Meetup #1 での発表資料です。
Yoshihiko Ozaki
June 29, 2021
Tweet
Share
Other Decks in Research
See All in Research
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
450
【輪講資料】Moshi: a speech-text foundation model for real-time dialogue
hpprc
3
720
AIグラフィックデザインの進化:断片から統合(One Piece)へ / From Fragment to One Piece: A Survey on AI-Driven Graphic Design
shunk031
0
500
EOGS: Gaussian Splatting for Efficient Satellite Image Photogrammetry
satai
4
630
多言語カスタマーインタビューの“壁”を越える~PMと生成AIの共創~ 株式会社ジグザグ 松野 亘
watarumatsuno
0
130
最適決定木を用いた処方的価格最適化
mickey_kubo
4
1.9k
SNLP2025:Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
180
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
640
Galileo: Learning Global & Local Features of Many Remote Sensing Modalities
satai
3
340
Submeter-level land cover mapping of Japan
satai
3
400
なめらかなシステムと運用維持の終わらぬ未来 / dicomo2025_coherently_fittable_system
monochromegane
0
3.5k
Remote sensing × Multi-modal meta survey
satai
4
430
Featured
See All Featured
GraphQLとの向き合い方2022年版
quramy
49
14k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
2.6k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
51k
YesSQL, Process and Tooling at Scale
rocio
173
14k
The Language of Interfaces
destraynor
162
25k
The Power of CSS Pseudo Elements
geoffreycrofte
79
6k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
How GitHub (no longer) Works
holman
315
140k
Building Adaptive Systems
keathley
43
2.8k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
188
55k
The Cost Of JavaScript in 2023
addyosmani
53
9k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
Transcript
OptunaʹΑΔଟత࠷దԽ Optuna Meetup #1 2021/06/26 ඌ࡚ Յ 1
ඌ࡚ Յ • ॴଐ • άϦʔגࣜձࣾʗ࢈ۀٕज़૯߹ݚڀॴਓೳηϯλʔ • ࠷ۙͷݚڀ • Ozaki,
Y., Tanigaki, Y., Watanabe, S., & Onishi, M. (2020). Multiobjective tree-structured parzen estimator for computationally expensive optimization problems. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference (pp. 533-541). • Ozaki, Y., Suzuki, Y., Hawai, T., Saito, K., Onishi, M., & Ono, K. (2020). Automated crystal structure analysis based on blackbox optimisation. npj Computational Materials, 6(1), 1-7. • ඌ࡚Յ, ଜক, & େਖ਼ً. (2020). ػցֶशʹ͓͚ΔϋΠύύϥϝʔλ࠷దԽख๏: ֓ཁͱಛ . ిࢠใ௨৴ֶձจࢽ D, 103(9), 615-631. 2
࣍ • ͡Ίʹɿଟత࠷దԽ • Optunaɿଟత࠷దԽख๏ • Optunaɿଟత࠷దԽؔ࿈ػೳ • ·ͱΊ 3
͡Ίʹɿଟత࠷దԽ 4
ଟత࠷దԽ • త࠷దԽ • ಉ࣌ʹ࠷దԽ͞ΕΔ ݸͷత͕ؔଘࡏ͢Δ • ྫɿాۭߓ 㱺 ϑϥϯΫϑϧτؒͷҠಈϓϥϯ
• ✔ Ҡಈ࣌ؒͷ࠷খԽ 㱻 ✔ අ༻ͷ࠷খԽʢ2ͭͷతτϨʔυΦϑͷؔʣ m m 5
ଟత࠷దԽ • త࠷దԽ • ಉ࣌ʹ࠷దԽ͞ΕΔ ݸͷత͕ؔଘࡏ͢Δ m m తۭؒ (f1
(x), f2 (x)) ୈ2తɿf2 (x) ୈ1తɿf1 (x) 2త࠷খԽ Minimize/Maximize subject to ɿ ൪ͷతؔ ɿܾఆม ɿ࣮ߦՄೳྖҬ f1 (x), f2 (x), …, fm (x) x ∈ X fi (x) i x X ୳ࡧۭؒ X x1 x2 ࣸ૾ 6
ଟత࠷దԽ • ଟత࠷దԽͰɼ୯Ұͷ࠷దղҰൠʹଘࡏ͠ͳ͍ • ଞͷҙͷղʹ༏ӽ͞Εͳ͍શͯͷղͷू߹ΛύϨʔτηοτͱݺͼ ύϨʔτηοτͷతۭؒͰͷ૾ΛύϨʔτϑϩϯτͱݺͿ ύϨʔτϑϩϯτ ྉۚ Ҡಈ࣌ؒ 2తʢҠಈ࣌ؒɼྉۚʣ࠷খԽ
༏ӽؔ • ABΛ༏ӽ͢Δ • AͱCൺֱෆՄೳͷؔ ଟత࠷దԽΛղ͘ͱύϨʔτηοτ ΛٻΊΔʢۙࣅ͢Δʣ͜ͱ 7
Optunaɿଟత࠷దԽख๏ 8
Optunaͱଟత࠷దԽɿػցֶशʹ͓͚ΔԠ༻ • λεΫ • Hyperparameter Optimization • Neural Architecture Search
• తؔ • Ϟσϧਫ਼ • ϞσϧαΠζʢɼফඅిྗʣ https://arxiv.org/abs/2105.01015 9
ଟత࠷దԽख๏ • ݱࡏOptunaͰར༻Մೳͳख๏ • ਐԽܕଟత࠷దԽɿNSGA-II • ଟతϕΠζ࠷దԽɿMOTPEɼqEHVI (integration.botorch) 10
ਐԽܕଟత࠷దԽ • ਐԽܭࢉΛ༻͍Δ͜ͱͰɼύϨʔτϑϩϯτΛۙࣅ͢Δղू߹ΛҰ ͷ࣮ߦͰಉ࣌ʹ֫ಘ͢Δ͜ͱΛతͱͨ͠ख๏ 11
• ղͷ༏ྼΛɼඇ༏ӽϥϯΫʹجͮ͘ऩଋੑɼࠞࡶڑʹجͮ͘ଟ༷ੑ ͷ؍͔Βܾఆ͠ɼ༏ΕͨղΛݩʹ࣍ੈͷݸମΛੜ NSGA-II (Deb et al., 2002) ඇ༏ӽϥϯΫɿ༏ӽ͞Ε͍ͯͳ͍ղΛRank 1ͱͯͦ͜͠
͔Βॱʹऩଋੑʢ༏ӽؔʣʹԠͯ͡ϥϯΫ͕ܾ·Δ ࠞࡶڑɿྡΓ߹͏ݸମؒͷϚϯϋολϯڑͱͯ͠ ܭࢉ͞ΕΔʢ ʣɼ྆ʹ͍ͭͯ ͱଋ͢Δ a + b ∞ 12
Optunaʹ͓͍ͯ NSGA-IIΛ͏ import optuna def objective(trial): x = trial.suggest_float("x", 0,
5) y = trial.suggest_float("y", 0, 3) v0 = 4 * x ** 2 + 4 * y ** 2 v1 = (x - 5) ** 2 + (y - 5) ** 2 return v0, v1 # objectiveશͯͷతؔΛฦ͢ # NSGAIISamplerΛ͏ sampler = optuna.samplers.NSGAIISampler(seed=1234) study = optuna.create_study( sampler=sampler, directions=["minimize", "minimize"] ) study.optimize(objective, n_trials=250) 13
ଟతϕΠζ࠷దԽ • తؔ୳ࡧۭؒʹ͍ͭͯϕΠζతͳϞσϧΛߏங͠ɼ֫ಘؔͱ ݺΕΔج४Λ༻͍ͯ༗ͳղΛޮతʹαϯϓϧ͢Δख๏ • తؔΛϞσϧԽɿຆͲͷଟతϕΠζ࠷దԽख๏ • ୳ࡧۭؒΛϞσϧԽɿMOTPE 14
MOTPE (Ozaki et al., 2020) • Optunaͷ୯త࠷దԽʹ͓͚Δඪ४ΞϧΰϦζϜͰ͋ΔTPEΛଟత ࠷దԽʹ֦ுͨ͠ͷ • Ϟσϧ୳ࡧۭؒͷ༗ɾඇ༗ͳղʹ͍ͭͯΧʔωϧີਪఆ
༗ ඇ༗ ୳ࡧۭؒʹ͓͍ͯରԠ͢Δ༗ͳղͷू߹ʹ ͍ͭͯΧʔωϧີਪఆ ୳ࡧۭؒʹ͓͍ͯରԠ͢Δඇ༗ͳղͷू߹ʹ ͍ͭͯΧʔωϧີਪఆ 15
MOTPE (Ozaki et al., 2020) • ࣍ʹධՁ͢ΔղExpected Hypervolume Improvement (EHVI)
֫ಘؔʹΑܾͬͯΊΔ • ू߹ ʹ ΛՃ͑ͨͱ͖ͷϋΠύϘϦϡʔϜ૿ՃྔͷظʹରԠɼ͜ΕΛ࠷େԽ͢Δ Λ࠾༻ • ࣮༗ɾඇ༗ྖҬͷ֬ີΛ ɼ ͱͨ͠ͱ͖ɼ ͕Γཱͭ EHVIY* (x) := ∫ max(IH (Y* ∪ {y}) − IH (Y*),0)p(y ∣ x)dy Y* y = f(x) x l(x) g(x) argmaxx EHVI(x) = argmaxx l(x)/g(x) Y r • ϋΠύϘϦϡʔϜ ʹଐ͢ΔϕΫτϧͱࢀর ʹғ·ΕͨྖҬ ͷମੵʢփ৭෦ʣ • ύϨʔτϑϩϯτମੵΛ࠷େԽ͢Δ Y r 16
Optunaʹ͓͍ͯ MOTPEΛ͏ ... # MOTPESamplerʹมߋ͢Δ͚ͩ sampler = optuna.samplers.MOTPESampler(seed=1234) study =
optuna.create_study( sampler=sampler, directions=["minimize", “minimize"] ) study.optimize(objective, n_trials=250) 17
ൺֱɿNSGA-IIͱMOTPE ؆୯ͳͰ͋ΕͲͪΒͰ͙͢ղ͚Δ 18
ൺֱɿNSGA-IIͱMOTPE • ऩଋMOTPEͷํ͕͍ ʢAutoML͖ʣ ͖ͬ͞ΑΓ͍͠ʢධՁճ250ʣ 19
ൺֱɿNSGA-IIͱMOTPE • ऩଋMOTPEͷํ͕͍ ʢAutoML͖ʣ • MOTPEධՁճʹݶք͋Γ ʢNSGA-IIزΒͰʣ MOTPE1000ճͰ15-20ఔɼଞͷଟత ϕΠζ࠷దԽख๏ʢPESMOSMS-EGOʣΑΓ ѹతʹ͍͕NSGA-IIͱൺΔͱʹͳΒͳ͍
20
ൺֱɿNSGA-IIͱMOTPE • ऩଋMOTPEͷํ͕͍ ʢAutoML͖ʣ • MOTPEධՁճʹݶք͋Γ ʢNSGA-IIزΒͰʣ • ७ਮͳࢄ࠷దԽNSGA-II͕ Α͍ʢMOTPEہॴղʹऩଋʣ
0-1φοϓαοΫʢ2త࠷େԽʣ 21
Optunaɿଟత࠷దԽؔ࿈ػೳ 22
ՄࢹԽ • ࢄਤ • (Parallel coordinate) ... sampler = optuna.samplers.MOTPESampler(seed=1234)
study = optuna.create_study(sampler=sampler, directions=["minimize", "minimize"]) study.optimize(objective, n_trials=250) # plotlyϕʔεͷՄࢹԽ fig = optuna.visualization.plot_pareto_front(study) fig.show() # matplotlibϕʔεͷՄࢹԽ optuna.visualization.matplotlib.plot_pareto_front( study ) plt.show() 23
ධՁ • ϋΠύϘϦϡʔϜ ... # ϋΠύϘϦϡʔϜܭࢉ͍ؔ·ͷͱ͜Ζ։ൃऀ͚API # কདྷతʹoptuna/_hypervolume/wfg.pyʹҠಈ͞ΕΔ༧ఆ wfg =
optuna.multi_objective._hypervolume.WFG() reference_point = np.array([3, 5]) trials = study.trials hvs = [] for i in range(1, len(trials) + 1): vector_set = np.array( [t.values for t in trials[:i]] ) hvs.append( wfg.compute(vector_set, reference_point) ) plt.style.use(“ggplot") plt.xlabel("Number of valuations") plt.ylabel("Hypervolume") plt.plot(range(1, len(hvs) + 1), hvs) plt.show() 24
·ͱΊ • ଟత࠷దԽύϨʔτ࠷దղͷू߹Λ֫ಘ͢Δ͜ͱ͕ඪ • OptunaਐԽܕଟత࠷దԽͱଟతϕΠζ࠷దԽͷ2λΠϓͷख๏Λఏڙ • લऀ൚༻తɼNSGA-IIͦͷ࠷දతͳख๏Ͱ20ؒͷ࣮͕͋Δ • ޙऀAutoML͖ɼMOTPEϋΠύύϥϝʔλ࠷దԽख๏TPEͷଟత൛ •
Optunaͷଟత࠷దԽؔ࿈ػೳΛհ • ଟత࠷దԽɼ୯త࠷దԽʹൺͯ׆༻ࣄྫ։ൃऀগͳ͍ɼࠓճΛ ͖͔͚ͬʹϢʔβ։ൃऀ͕૿͑Δͱخ͍͠ 25