Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介:Unsupervised Word Polysemy Quantification ...
Search
Taichi Aida
July 23, 2021
Research
0
120
文献紹介:Unsupervised Word Polysemy Quantification with Multiresolution Grids of Contextual Embeddings
Taichi Aida
July 23, 2021
Tweet
Share
More Decks by Taichi Aida
See All by Taichi Aida
意味を表すベクトル表現を用いたテキスト分析
a1da4
0
85
PhD Defence: Considering Temporal and Contextual Information for Lexical Semantic Change Detection
a1da4
1
250
文献紹介:A Multidimensional Framework for Evaluating Lexical Semantic Change with Social Science Applications
a1da4
1
360
YANS2024:目指せ国際会議!「ネットワーキングの極意(国際会議編)」
a1da4
0
280
言語処理学会30周年記念事業留学支援交流会@YANS2024:「学生のための短期留学」
a1da4
1
410
新入生向けチュートリアル:文献のサーベイv2
a1da4
16
11k
文献紹介:Isotropic Representation Can Improve Zero-Shot Cross-Lingual Transfer on Multilingual Language Models
a1da4
0
210
文献紹介:WhitenedCSE: Whitening-based Contrastive Learning of Sentence Embeddings
a1da4
1
340
文献紹介:On the Transformation of Latent Space in Fine-Tuned NLP Models
a1da4
0
120
Other Decks in Research
See All in Research
2025-11-21-DA-10th-satellite
yegusa
0
100
When Learned Data Structures Meet Computer Vision
matsui_528
1
2.2k
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
940
Satellites Reveal Mobility: A Commuting Origin-destination Flow Generator for Global Cities
satai
3
390
生成的情報検索時代におけるAI利用と認知バイアス
trycycle
PRO
0
200
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.2k
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
1.2k
An Open and Reproducible Deep Research Agent for Long-Form Question Answering
ikuyamada
0
210
EarthDial: Turning Multi-sensory Earth Observations to Interactive Dialogues
satai
3
600
【NICOGRAPH2025】Photographic Conviviality: ボディペイント・ワークショップによる 同時的かつ共生的な写真体験
toremolo72
0
120
生成AI による論文執筆サポート・ワークショップ 論文執筆・推敲編 / Generative AI-Assisted Paper Writing Support Workshop: Drafting and Revision Edition
ks91
PRO
0
110
Proposal of an Information Delivery Method for Electronic Paper Signage Using Human Mobility as the Communication Medium / ICCE-Asia 2025
yumulab
0
120
Featured
See All Featured
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
280
We Are The Robots
honzajavorek
0
130
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
61
SEOcharity - Dark patterns in SEO and UX: How to avoid them and build a more ethical web
sarafernandez
0
110
ラッコキーワード サービス紹介資料
rakko
0
2M
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.7k
Odyssey Design
rkendrick25
PRO
0
460
Leo the Paperboy
mayatellez
3
1.3k
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
300
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
61
48k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.5k
Transcript
Unsupervised Word Polysemy Quantification with Multiresolution Grids of Contextual Embeddings
Christos Xypolopoulos, Antoine Tixier, Michalis Vazirgiannis EACL2021 論文紹介
導入 - 単語の多義語の度合いを予測する手法を提案 - 単語の順位付けタスクで6種類の評価指標におい て6種類の人手セットとの相関を示した 2
手法 - 仮定:文脈あり単語ベクトルが空間を占める大き さは多義語の度合いを示す - 手法: 1. D次元に圧縮して格子状に線を引く 2. 単語ごとに格子を占める比率を計算
3. 多義語の度合いを示すスコアを計算 3 多義語の度合い word 1 > word 2
手法 1. D次元に圧縮し、格子状に線を引く 4
手法 2. 単語ごとに格子を占める比率を計算 5 word 1, l = 1 の場合:
手法 2. 単語ごとに格子を占める比率を計算 6 word 1, l = 2 の場合:
word 1, l = 3 の場合:
手法 3. 多義語の度合いを示すスコアを計算 7 格子が粗くなるほどペナルティを与える
実験:多義語の度合いの順位付け - タスク:対象単語について多義語の度合いをラン キング - データ:English Wikipedia dump - 評価対象の単語選択
- English Wikipedia で頻度の高い上位2000単語を選択 - 3000文以上ある単語(2000→1822単語)を残す 8
実験:多義語の度合いの順位付け - 比較手法(Ground Truth) - WordNet:synset 数を多義語の度合いとする - WordNet-Reduced:WordNet の
synset 数を少なくした もの。synset 数を多義語の度合いとする - WordNet-Domains:WordNet に自動でドメインのラベル を割り振ったもの。ドメイン数が多義語の度合い 9
実験:多義語の度合いの順位付け - 比較手法(Ground Truth) - OntoNotes:様々なメディアのデータから構築。WordNet をまとめた inventory 数が多義語の度合い -
Oxford:Oxford Dictionary にある意味の数を数える - Wikipedia:「曖昧さ回避」にあるカテゴリの数を多義語の 度合いとした - 比較手法(Baseline) - frequency:高頻度ほど多義語 - random:対数正規分布に従いランダムに並べ替える 10
実験:多義語の度合いの順位付け - 提案手法 - 事前訓練済み ELMo の最終層から単語ベクトルを獲得 - D:PCA でベクトルの次元を圧縮(1024→2~20)
- 格子の線の数 L:2~19 11
実験:多義語の度合いの順位付け - 評価指標:6種類の指標で評価 - cosine similarity - Spearman’s rho -
Kendall’s tau - precision@k - Normalized Discounted Gain (NDCG): - Rank Biased Overlap (RBO): 12
結果:多義語の度合いの順位付け - Ground Truth(cos, NDCG は特に Wiki)との相 関が高く、2つの baseline も超えている
- その他の指標で評価した場合も同様 13
議論:パラメータ(縦軸:線の数 L, 横軸: 圧縮後の次元 D) - D=2~4, L=3,4~8 くらいで良い性能になる 14
線の数 L 圧縮後の次元 D
応用:異なる語義の抽出 - 同じ単語でも異なる格子のマスから取り出せば、 異なる語義の文を抽出できる - count:固有名詞, 番号, 数え上げ - live:住む,
ライブ - bank:銀行, 土手 15
結論 - 圧縮したベクトル空間に線を引いて、格子を占め る比率から単語の多義語の度合いを計算 - 単語の順位づけタスクで人手との相関を示す (クラスタリングと比較して欲しい) 16
手法:アイデア - 画像処理における pyramid matching と同じ 17 Beyond Bags of
Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories. (Lazebnik+2006)
vs. クラスタリング - 文脈あり単語ベクトルも一様ではない - クラスタリングは空間に対して均等に分割をせず (密度ベース)、外れ値のクラスタも - クラスタ数=多義語の度合い は信頼できない
18 How Contextual are Contextualized Word Representations? Comparing the Geometry of BERT, ELMo, and GPT-2 Embeddings (Ethayarajh2019)
実験:多義語の度合いの順位付け - 対象の1822単語のうち、Ground Truth で使えた 単語数 19
議論:単語の語義ごとに 意味の近い単語を抽出 - 単語の各語義が所属するマスの中で高頻度の単 語を取り出す - metal:鉱物, オリンピック, 音楽 20