Upgrade to Pro — share decks privately, control downloads, hide ads and more …

感染症の数理モデル3

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.

 感染症の数理モデル3

Avatar for Daisuke Yoneoka

Daisuke Yoneoka

March 22, 2024
Tweet

More Decks by Daisuke Yoneoka

Other Decks in Research

Transcript

  1. ⽬次 1. 感染症のコンパートメントモデル 2. 基本再⽣産数 3. 最終流⾏規模 4. R実装 5.

    ⼈⼝の異質性とSIR 6. 再⽣産⽅程式とエボラ vs インフル 本書の内容をカバーします。 具体的なコードなどは右の本 詳細なプログラムなどは https://github.com/objornstad/epimdr/tree/ master/rcode (結構間違ってる。。。) 2/48
  2. エンデミックSIR 単位時間あたりb⼈誕⽣ 感受性者も感染者も回復者も、単位時間当たり⼀定の割合μ(⼈/単位時間) で (その感染症でない理由によって) 死亡(感染症が理由でないことを表すため「⾃然死」とも呼ぶ) 16 <latexit sha1_base64="NvWFqkTvyTGUqoy+uW80gQOtDHA=">AAAC8XicfVFdb9MwFHUyPkb4WAePvFhUoA5olYwNeABpAh7YA2J8dJtUV9WN43TW4jiybxBVlB/CAxLilV/Ev8FJC+q6iSslOjr3HF/f47jIpMUw/O35a5cuX7m6fi24fuPmrY3O5u1Dq0vDxZDrTJvjGKzIZC6GKDETx4URoOJMHMWnr5v+0RdhrNT5Z5wVYqxgmstUckBHTTrfH7AkNcCr5FMPt+oqwZq+pDHtM1XShuqzWCC0kO43P8aCf579JQ9dFfZpj01BKXjkzrrA/HHJPBe2mj5tRjfNIJh0uuEgbIueB9ECdMmiDiab3guWaF4qkSPPwNpRFBY4rsCg5JmoA1ZaUQA/hakYOZiDEnZctTnW9L5jEppq474cacsuOypQ1s5U7JQK8MSu9hryot6oxPT5uJJ5UaLI+XxQWmYUNW0ehSbSCI7ZzAHgRrq7Un4CLiV0T3dmSnM2ap1Zt8ob4VY04p2j3hfCAGrzsGJgpkrmtVt5yh436H9C+PpX6FCbd7Sa7nlwuD2Ing52P+x0914tkl8nd8k90iMReUb2yFtyQIaEe2velrftPfGt/83/4f+cS31v4blDzpT/6w+LDORW</latexit> dS(t)

    dt = b µS(t) S(t)I(t) dI(t) dt = S(t)I(t) ( + µ)I(t) dR(t) dt = I(t) µR(t) <latexit sha1_base64="UuVs7790AhEJPpVkp7fKbSMNZCU=">AAACo3icfVDbbtNAEN2YWwm3FB55WRFVSrlENqKFB5Aq4AGEoCU0baXYitbrtbPqXqzdMRBZ/iw+BvEK/8E4NRJtESPt6OjMnJmdk5ZKegjD773gwsVLl6+sXe1fu37j5q3B+u0DbyvHxZRbZd1RyrxQ0ogpSFDiqHSC6VSJw/T4VVs//Cycl9bsw7IUiWaFkbnkDJCaD3bjLHeM19mHEWw2dQYNfUHTR7GuRp+QefC2TRNMm8iHNJ7IYgHMOfuFtgokuwFpU6OomQ+G4ThcBT0Pog4MSRd78/Xe8zizvNLCAFfM+1kUlpDUzIHkSjT9uPKiZPyYFWKG0DAtfFKvLm/oBjIZza3DZ4Cu2L8VNdPeL3WKnZrBwp+tteS/arMK8mdJLU1ZgTD8ZFFeKQqWtjbSTDrBQS0RMO4k/pXyBUMjAM0+taWdDdYqj6e8FniiE++R2i2FY2Dd/TpmrtDSNHhyET9s0f8a2dc/jYj6ffQ7OuvueXDweBxtj7c+PhnuvOycXyN3yT0yIhF5SnbIG7JHpoSTb+QH+Ul+BRvBu2AS7J+0Br1Oc4eciiD5DdWizzY=</latexit> dN(t) dt = b µ(S(t) + I(t) + R(t)) = 0 ) N(t) = b µ N(t) = S(t)+I(t)+R(t)はb/μを安定な平衡値としてもつ ので、S, I, Rの2つのうち⼀つが決まれば後は決まる ので、上2つで⼗分じゃん ⾏列表記しておこう <latexit sha1_base64="ziF6xaENJaT0Tp2RdtM46DBREzM=">AAACg3icfVBdTxNBFJ0uolBBiz7yMrEx4Stll6DyAAlRH/SBgNECSbdp7k5vtxNmZzYzd0mbTX+Gv4ZX/BH+G2dLIQLGm0zm5Jx75845Sa6kozD8XQvmnsw/fbawWH++tPziZWPl1akzhRXYFkYZe56AQyU1tkmSwvPcImSJwrPk4lOln12iddLoHzTOsZtBquVACiBP9RrbozVa5wc8TjCVuswzICtHk+8VG8f8q79j1P07oddohq1wWvwxiGagyWZ10lup7cd9I4oMNQkFznWiMKduCZakUDipx4XDHMQFpNjxUEOGrltOnU34W8/0+cBYfzTxKfv3RAmZc+Ms8Z3+g0P3UKvIf2mdggZ73VLqvCDU4mbRoFCcDK9i4n1pUZAaewDCSv9XLoZgQZAP896W6m0yRjlv5TN6ixaPPHWcowUydqOMwaaZ1BNvOY23KvS/RhjdNnpUr/u8o4fpPganO63ofevdt93m4cdZ8gtslb1hayxiH9gh+8JOWJsJ9pNdsWv2K5gPNoOdYPemNajNZl6zexUc/AFknMUF</latexit> x(t) = ✓ S(t) I(t) ◆ <latexit sha1_base64="HGe8DoBfD/ZpFEIRM5/3fmVSQ8o=">AAACqXicfVBNbxMxEHWWr7J8pXDkYhEhpbSNdhEtHECqgAM5IFqFtBFxFM06s1ur/ljZXtRolV/GL+HIFf4E3jRFtEWMZOnpvRnPvJeVUjifJN9b0bXrN27eWrsd37l77/6D9vrDQ2cqy3HIjTR2lIFDKTQOvfASR6VFUJnEo+zkXaMffUXrhNGf/bzEiYJCi1xw8IGatod5d7BF+xv0DWUZFkLXpQJvxekizraZquiAbjeKBzroMxafw8B2g7zJClAKNvoxQz37Mzttd5Jesix6FaQr0CGr2p+ut16zmeGVQu25BOfGaVL6SQ3WCy5xEbPKYQn8BAocB6hBoZvUS/8L+jQwM5obG572dMn+PVGDcm6ustAZDjx2l7WG/Jc2rnz+alILXVYeNT9blFeSekObMOlMWORezgMAbkW4lfJjsMB9iPzCluZvb4x0wcp7DBYtfgzUpxIteGOf1QxsoYReBMsF22rQ/xrh9LwxoDgOeaeX070KDp/30t3ezsGLzt7bVfJr5DF5QrokJS/JHvlA9smQcPKN/CA/ya9oMzqIRtGXs9aotZp5RC5UxH8DNX/Rfw==</latexit> f(S, I) = ✓ b µS SI SI (µ + )I ◆ とおくと、上2つの式は <latexit sha1_base64="/BZRLvoWQ0SKf5c3bLlt0XMTM9M=">AAACb3icfVBdSxtBFJ1sP7SxrbE+9EEoQ0MhKSXsirY+KEjtQ19KLRgVsiHcnb0bB2dnlpm7Ylj2wV/T1/bn9Gf0HzgbU6haemHgzLnnzp1zkkJJR2H4qxU8ePjo8dLyk/bK02fPVztrL46dKa3AoTDK2NMEHCqpcUiSFJ4WFiFPFJ4k5wdN/+QCrZNGH9GswHEOUy0zKYA8NelsxGlmQVTpZY/6dZVSzfd41mtu/UmnGw7CefH7IFqALlvU4WSttRunRpQ5ahIKnBtFYUHjCixJobBux6XDAsQ5THHkoYYc3biau6j5G8+kPDPWH018zv49UUHu3CxPvDIHOnN3ew35r96opGxnXEldlIRa3CzKSsXJ8CYSnkqLgtTMAxBW+r9ycQY+FfLB3drSvE3GKOetfEJv0eIXT30t0AIZ+7aKwU5zqWtveRq/a9D/hHD5R+hRu+3zju6mex8cbw6i94Ptb1vd/Y+L5JfZBnvNeixiH9g++8wO2ZAJdsW+sx/sZ+t38DJ4FfAbadBazKyzWxX0rwEMVL2s</latexit> dx(t) dt = f(x(t)) よく使うので、ヤコビアンも定義しとく <latexit sha1_base64="uxtQikUhlTJa0XzJc+mR1VSqhC0=">AAACu3icfVHLbhMxFHWGVxleKSzZWERACm00g1pgQaUKWNAFoqikrRRH0R3nztTUj5HtQY1G+UQ+gO9gCxKedCi0RVzJ0vE59+F7nJVSOJ8k3zrRpctXrl5buh7fuHnr9p3u8t09ZyrLcciNNPYgA4dSaBx64SUelBZBZRL3s6M3jb7/Ba0TRn/ysxLHCgotcsHBB2rSLfLH/d1Vur1CNynLsBC6LhV4K47n8RpTFV1raA90mz6ip5ddxuI/dMsFtR8qnrIClIKVmKGenjabdHvJIFkEvQjSFvRIGzuT5c4rNjW8Uqg9l+DcKE1KP67BesElzmNWOSyBH0GBowA1KHTjeuHInD4MzJTmxoajPV2wf1fUoJybqSxkhgceuvNaQ/5LG1U+fzmuhS4rj5qfDMorSb2hjb10KixyL2cBALcivJXyQ7DAffiEM1Oa3t4Y6cIqbzGsaPF9oD6UaMEb+6RmYAsl9DysXLDVBv0vEY5/JwYUx8Hv9Ly7F8Hes0H6fLDxcb239bp1foncJw9In6TkBdki78gOGRJOvpLv5Af5GW1GPPocyZPUqNPW3CNnIqp+AUax1qU=</latexit> f0(S, I) = ✓ µ I S I S (µ + ) ◆
  3. ワクチンの効果 eの割合だけワクチン接種している = R(0)>0 (免疫をつけている) cf. (さっきまでは(S(0), I(0),R(0))=(N,0,0)だったけど、今は (S(0), I(0),R(0))=((1-e)N,0,eN))

    22 <latexit sha1_base64="oMr7G/svA9fDN76DQkTXeU9g4jE=">AAACjHicdVFRaxNBEN47tdaobaqPviwGJaFNuJO0FkqhVBD7VqtpC7kQ5vbm0qW7d8funBCO/Bf/lA/+m+5dgsRWBwY+vplvvt2ZuFDSUhD89vxHj59sPN181nr+4uXWdnvn1aXNSyNwJHKVm+sYLCqZ4YgkKbwuDIKOFV7Ft5/q+tUPNFbm2XeaFzjRMMtkKgWQo6btn++jJDUgquRbl3qLKqEFP+ZxN+xjj/cjXfKadyhGggafuYyi1h/d2Zqu33WK3WgGWkOP1xW++3/lxbojLt0ulm7NhGbAtN0JBkET/CEIV6DDVnE+bf+KklyUGjMSCqwdh0FBkwoMSaFw0YpKiwWIW5jh2MEMNNpJ1Wxywd85JuFpblxmxBt2XVGBtnau471Yu2YNdGPvl2vyX7VxSenhpJJZURJmYumVlopTzuvL8EQaFKTmDoAw0j2XixtwmyJ3v5bbQ3j/1w/B5YdBeDAYfh12Tk5XG9lkb9hb1mUh+8hO2Bd2zkZMeBvenrfvHfhb/tA/8o+Xrb630rxmf4X/+Q6XILxw</latexit> dS(t) dt = b(1 e) µS(t) S(t)I(t) dI(t) dt = (µ + )I(t) + S(t)I(t) dR(t) dt = be µR(t) I(t) ((1-e)N,0,eN)) = (b(1-e)/μ, 0, be/μ) を安定な平衡値としてもつ このとき少数の感染者が⼊ってきたら、再⽣産過程は以下 <latexit sha1_base64="InRFdEtl5ZpoewqBvfuaDU8L5JY=">AAACOXicbVBNS9xAGJ5oW3X74VaPXoYuhRXrkoi0XhTRiz0UFLoqbJblzeTN7uBMEmbeFJaQX+Wxv6MHj+ql9Oof6GQ3h6p9YeCZ54OZ94lyJS35/o23sPji5aul5ZXW6zdv362236+d26wwAvsiU5m5jMCikin2SZLCy9wg6EjhRXR1XOsXP9BYmaXfaZrjUMM4lYkUQI4atb+FcWJAlPHXLm1WZUwV3+fb3VAXW+EYtIZNXit8K4yQgDfu+SXqBtvoQs5c1aYDf9Tu+D1/Nvw5CBrQYc2cjtq/wjgThcaUhAJrB4Gf07AEQ1IorFphYTEHcQVjHDiYgkY7LGdrV/yjY2KeZMadlPiM/TdRgrZ2qqNPkXZmDTSxT+Wa/J82KCjZG5YyzQvCVMzfSgrFKeN1jTyWBgWpqQMgjHTf5WICrhtyZbdcD8HTrZ+D851e8Lm3e7bbOTxqGllmG+wD67KAfWGH7ISdsj4T7JrdsDt27/30br3f3p+5dcFrMuvs0XgPfwFuAKpB</latexit> dI(t) dt = (µ + )I(t) + b(1 e) µ I(t) > 0 <latexit sha1_base64="F7m6a5Ev4Axl7ctn8T9eiPzISqo=">AAACIHicbVDLSgMxFM3UV62vqks3wSK0qGVGiroRim5c1mIf0Cklk95pQ5OZIckIZeiPuPRLXKobceFCv8b0sdDWAxcO55xLco8Xcaa0bX9ZqaXlldW19HpmY3Nreye7u1dXYSwp1GjIQ9n0iALOAqhppjk0IwlEeBwa3uBm7DceQCoWBvd6GEFbkF7AfEaJNlInW6rmoYCvsNv1JaGJ64Em2MN55xQKo8QVcd7MseEmMxGrHRt3sjm7aE+AF4kzIzk0Q6WT/XS7IY0FBJpyolTLsSPdTojUjHIYZdxYQUTogPSgZWhABKh2MrluhI+M0sV+KM0EGk/U3xsJEUoNhXfiCRMWRPfVvD0W//NasfYv2wkLolhDQKdv+THHOsTjtnCXSaCaDw0hVDLzXUz7xDSlTacZ04Mzf/UiqZ8VnfNi6a6UK1/PGkmjA3SI8shBF6iMblEF1RBFj+gZvaI368l6sd6tj2k0Zc129tEfWN8/I+ifNw==</latexit> R(e) = b(1 e) µ(µ + e) = (1 e)R0 実効再⽣産数 <latexit sha1_base64="uMrhJGBeAXrqFujfAKJogCUqZoM=">AAACAHicbVDLSsNAFJ3UV62v+Ni5GSyCCy2JFHUjFN24rGIf0IYwmU7aoTOTMDMRasjGL3GpbsSt/+HCv3HaZqGtBy4czrmXe+8JYkaVdpxvq7CwuLS8Ulwtra1vbG7Z2ztNFSUSkwaOWCTbAVKEUUEammpG2rEkiAeMtILh9dhvPRCpaCTu9SgmHkd9QUOKkTaSb+8ReAndk24vlAinbpbe+U7m22Wn4kwA54mbkzLIUfftr24vwgknQmOGlOq4Tqy9FElNMSNZqZsoEiM8RH3SMVQgTpSXTq7P4KFRejCMpCmh4UT9PZEirtSIB8cBN80c6YGatcfif14n0eGFl1IRJ5oIPN0VJgzqCI7TgD0qCdZsZAjCkppzIR4gE4U2mZVMDu7s1/OkeVpxzyrV22q5dpUnUgT74AAcARecgxq4AXXQABg8gmfwCt6sJ+vFerc+pq0FK5/ZBX9gff4Ao3eVJw==</latexit> e = 1 1 R0 R(e)<1であればよいので、 臨界免疫化割合 これより⼤きいと集団免疫
  4. 再⽣産⽅程式 (renewal equation) 再⽣産⽅程式:感染ダイナミクスを簡略化した SIR モデルではなく、 もう⼀つの重要なアイディア 再⽣過程を記述する⽅程式の⼀種 時刻 tにおける新規感染者数

    I(t) は、a⽇前の過去の新規感染者数を I(t−a)を⽤いて 基本再⽣産数は、全感染性期間を積分することで 23/20 <latexit sha1_base64="KRYtOBHRA80qCdkLhBLyz4qB/bc=">AAACeHicfVBNbxMxEHWWj5bw0bQcuRgiRILaaLeCwgVRWg5wQBSJtJWyIZp1ZlOr/ljZs4holTO/hiv9Lf0rPdWbBom2iJEsP7034/F7WaGkpzg+bUQ3bt66vbR8p3n33v0HK63VtX1vSyewL6yy7jADj0oa7JMkhYeFQ9CZwoPseLfWD76j89KarzQtcKhhYmQuBVCgRq3HHzvU5W94Kg2N4m/hymnK33WgG4QN6I5h1GrHvXhe/DpIFqDNFrU3Wm28TcdWlBoNCQXeD5K4oGEFjqRQOGumpccCxDFMcBCgAY1+WM29zPjTwIx5bl04hvic/XuiAu39VGehUwMd+ataTa5n+l/yoKT89bCSpigJjbjYlZeKk+V1NnwsHQpS0wBAOBm+y8UROBAUEry0qH6brFU+uHmPwaXDT4H6XKADsu55lYKbaGlmwfUkXa/R/xrhx5/GgJrNEHlyNeDrYH+zl2z1Xn550d7eWYS/zB6xJ6zDEvaKbbMPbI/1mWA/2S/2m500ziIePYu6F61RYzHzkF2qaPMcMWi/2A==</latexit> I(t) = Z 1 0 A(a)I(t a)da A(a)は、⼀⼈の感染者がある時刻で感染した場合、そのa⽇後に平均的に感染させる⼈数を表現。 (A(a)が正規化されている場合)A(a)がserial interval (⼆次感染までの時間)の確率密度関数となる!!! <latexit sha1_base64="vFZ72HbnVeU8w6LkYvqK9aOFGaY=">AAACb3icfVBdaxNBFJ2sVdv4leqDhYIMBqGVEnZLtX0RW/XBF7GKaQvZuNyd3E2Hzscyc1cMS/pr+lr/jz/Df+BsGsG24oVhDueeO3fOyUslPcXxz1Z0Y+HmrduLS+07d+/df9BZfnjgbeUE9oVV1h3l4FFJg32SpPCodAg6V3iYn7xt+off0HlpzRealDjUMDaykAIoUFln5XMWv0qloSz+Gq6CJnxvDdZHkHW6cS+eFb8OkjnosnntZ8ut1+nIikqjIaHA+0ESlzSswZEUCqfttPJYgjiBMQ4CNKDRD+uZhSl/FpgRL6wLxxCfsX9P1KC9n+g8KDXQsb/aa8iNXP+rPaio2BnW0pQVoREXu4pKcbK8iYSPpENBahIACCfDd7k4BgeCQnCXFjVvk7XKBzfvMLh0+CFQH0t0QNY9r1NwYy3NNLgepxsN+p8Qvv8RBtRuh8iTqwFfBwebveRl78Wnre7um3n4i2yVPWVrLGHbbJe9Z/uszwQ7ZWfsnP1o/YoeR08ifiGNWvOZR+xSReu/AacbvXU=</latexit> R0 = Z 1 0 A(a)da
  5. 実際の解き⽅ 特性曲線法を使って頑張って解く(12、13室は演習問題?) 25/20 <latexit sha1_base64="icnoX6AznnzM97ilqbsTvRLdUjU=">AAADT3iclVJLj9MwEHZaHrvlsV04crGokFJoqxTxuiBWwIE9IBZBd1eq22riOKm1dhLZE7RVlBtX+G8c+SVwQrhtEOxDKzGS5U/ffPPZM3aYK2kxCL57jealy1eubmy2rl2/cXOrvX1r32aF4WLEM5WZwxCsUDIVI5SoxGFuBOhQiYPw6NUyf/BJGCuz9CMucjHRkKQylhzQUbP2z10fe0GXPqcf/KDLlIiRlUymOAumSFkoEHzoMnGcr3J+v84BZQloDT6zMtHQjdY7MzKZY9eZ9sHZRkAf0FUFTt0W4+KvZRQb4OX/OlfnVJTQx+riql0/6DmVu9CaYdWs3QkGwSroWTCsQYfUsTfb9l6wKOOFFilyBdaOh0GOkxIMSq5E1WKFFTnwI0jE2MEUtLCTcvVEFb3nmIjGmXErRbpi/60oQVu70KFTasC5PZ1bkr1Qn5ceFxg/m5QyzQsUKV+fFReKYkaXT04jaQRHtXAAuJHuupTPwU0f3cc4cdDSG7NMWdfNa+G6NOKto97lwgBm5n7JwCRappXrOmG9JbpICMd/hA61Wm7kw9MDPgv2Hw6GTwaP3z/q7Lysh79B7pC7xCdD8pTskDdkj4wI96beZ++L97XxrfGj8atZSxteDW6TE9Hc/A0ueg7s</latexit> I(t, 0) = S(0) 8

    < : Z t 0 (a) exp ✓ Z a 0 ( )d ◆ I(t a, 0)da + Z 1 t (a) exp R a 0 ( )d exp ⇣ R a t 0 ( )d ⌘I(0, a t)da 9 = ; I(0, a-t)は初期t=0の感染者がどれだけ 感染させたかを表現。つまり、tがある 程度⻑いと0であることが期待される <latexit sha1_base64="GTRq6qknRaiXtLrwk85pERQHa50=">AAACfHicfVDbbhMxEHWWWxsuTeGRF4tQKYU02kVQeEG0hQd4QBSJtJWyIZp1ZlOrvqzsWUS0yhf0a3ilX9KfqepNg0RbxEiWj86Z8ficrFDSUxyfNqIbN2/dvrO03Lx77/6Dldbqwz1vSyewL6yy7iADj0oa7JMkhQeFQ9CZwv3s6H2t7/9A56U132ha4FDDxMhcCqBAjVprnzrUjdf5W55KQ6P4e7hymvLtDqwHaQOCOIZRqx334nnx6yBZgDZb1O5otfEuHVtRajQkFHg/SOKChhU4kkLhrJmWHgsQRzDBQYAGNPphNfcz42uBGfPcunAM8Tn790QF2vupzkKnBjr0V7Wa7Gb6X/KgpPzNsJKmKAmNuNiVl4qT5XU+fCwdClLTAEA4Gb7LxSE4EBRSvLSofpusVT64+YDBpcPPgfpSoAOy7lmVgptoaWbB9STt1uh/jfDzT2NAzWaIPLka8HWw96KXbPZefX3Z3tpZhL/EHrMnrMMS9pptsY9sl/WZYMfsF/vNThpn0dPoebRx0Ro1FjOP2KWKNs8BT1LAuA==</latexit> I(t, 0) = Z 1 0 A(a)I(t a, 0)da 第⼀項⽬だけ <latexit sha1_base64="smcD8zjsjLXXsER4pdJiE6kbOOA=">AAACmnicfVDbbhMxEHWWWwm3FB7hwSJCSlCJdhG3F0RpeQAhRBFNWykO0awzu7Fqr1f2LGq0ygfxNbzSv8GbBIm2iJEsH585Y/uctNTKUxyftqJLl69cvbZxvX3j5q3bdzqbdw+8rZzEobTauqMUPGpV4JAUaTwqHYJJNR6mx7tN//A7Oq9ssU/zEscG8kJlSgIFatLZfduDPn/Nv/bivkiRIBwFnpRCY0a9J0IVNIm/ARc5GAM94VVuoD9d7cKpfEb9SacbD+Jl8YsgWYMuW9feZLP1RkytrAwWJDV4P0riksY1OFJS46ItKo8lyGPIcRRgAQb9uF66XfBHgZnyzLqwCuJL9u+JGoz3c5MGpQGa+fO9htxKzb/ao4qyV+NaFWVFWMjVW1mlOVnepMenyqEkPQ8ApFPhu1zOwIGkkPGZh5q7yVrtg5t3GFw6/BSozyU6IOse1wJcblSxCK5zsdWg/wnh5I8woHY7RJ6cD/giOHg6SF4Mnn951t3eWYe/we6zh6zHEvaSbbP3bI8NmWQ/2E/2i51GD6Kd6EP0cSWNWuuZe+xMRfu/AXYtzK0=</latexit> A(a) = S(0) (a) exp ✓ Z a 0 ( )d ◆ ただし <latexit sha1_base64="QvFYNraTbOF3WY09zCRxI8hPGLg=">AAACeXicfVDLbhNBEBwvr2BeDhy5TGIhmSiydnnfCAmHXBBBwkkkr7F6Z3udUeaxmulFWKu98zVck1/Jt+TCrGMkkiBaGk2punp6qrJSSU9xfNaJbty8dfvOyt3uvfsPHj7qrT7e97ZyAkfCKusOM/CopMERSVJ4WDoEnSk8yI532v7Bd3ReWvOV5iVONMyMLKQACtS0t57mhQNRfxjA86ZOpaFp/C1cBc15y+XQTHv9eBgvil8HyRL02bL2pqud92luRaXRkFDg/TiJS5rU4EgKhU03rTyWII5hhuMADWj0k3phpuHPApPzwrpwDPEF+/dEDdr7uc6CUgMd+au9ltzM9L/a44qKd5NamrIiNOJiV1EpTpa34fBcOhSk5gGAcDJ8l4sjCPlQiPDSovZtslb54OYjBpcOPwXqc4kOyLqNOgU309I0wfUs3WzR/4Tw448woG43RJ5cDfg62H8xTN4MX3951d/aXoa/wp6ydTZgCXvLttgu22MjJthP9oudsNPOebQWDaKNC2nUWc48YZcqevkbmCPB+g==</latexit> A(a) R 1 0 A(a)da 再⽣産核 は⼆次感染までの時間(serial interval) の確率密度関数とみなせる
  6. エボラは感染しやすいのか?(1) エボラウイルス病のR0 =1.5 ~ 2.0 H1N1-2009のR0 = 1.4 26/20 「エボラとインフルの感染性は同じくらいだ」

    というstatementは正しいか? <latexit sha1_base64="KRYtOBHRA80qCdkLhBLyz4qB/bc=">AAACeHicfVBNbxMxEHWWj5bw0bQcuRgiRILaaLeCwgVRWg5wQBSJtJWyIZp1ZlOr/ljZs4holTO/hiv9Lf0rPdWbBom2iJEsP7034/F7WaGkpzg+bUQ3bt66vbR8p3n33v0HK63VtX1vSyewL6yy7jADj0oa7JMkhYeFQ9CZwoPseLfWD76j89KarzQtcKhhYmQuBVCgRq3HHzvU5W94Kg2N4m/hymnK33WgG4QN6I5h1GrHvXhe/DpIFqDNFrU3Wm28TcdWlBoNCQXeD5K4oGEFjqRQOGumpccCxDFMcBCgAY1+WM29zPjTwIx5bl04hvic/XuiAu39VGehUwMd+ataTa5n+l/yoKT89bCSpigJjbjYlZeKk+V1NnwsHQpS0wBAOBm+y8UROBAUEry0qH6brFU+uHmPwaXDT4H6XKADsu55lYKbaGlmwfUkXa/R/xrhx5/GgJrNEHlyNeDrYH+zl2z1Xn550d7eWYS/zB6xJ6zDEvaKbbMPbI/1mWA/2S/2m500ziIePYu6F61RYzHzkF2qaPMcMWi/2A==</latexit> I(t) = Z 1 0 A(a)I(t a)da の解を と⼀旦してみる <latexit sha1_base64="g1gRI6Y400KhcDNHvGyOUuELeYQ=">AAAB/XicbVBNS8NAEN34WetXqkcvi0VoQUoiRb0IRS96q2A/oA1ls920SzebsDtRSyn+Eo/qRbz6Szz4b9y2OWjrg4HHezPMzPNjwTU4zre1tLyyurae2chubm3v7Nq5vbqOEkVZjUYiUk2faCa4ZDXgIFgzVoyEvmANf3A18Rv3TGkeyTsYxswLSU/ygFMCRurYuZsCFPEFHrTZY1xQGIodO++UnCnwInFTkkcpqh37q92NaBIyCVQQrVuuE4M3Igo4FWycbSeaxYQOSI+1DJUkZNobTU8f4yOjdHEQKVMS8FT9PTEiodbD0D/2Q9McEujreXsi/ue1EgjOvRGXcQJM0tmuIBEYIjyJAne5YhTE0BBCFTfnYtonilAwgWVNDu7814ukflJyT0vl23K+cpkmkkEH6BAVkIvOUAVdoyqqIYoe0DN6RW/Wk/VivVsfs9YlK53ZR39gff4AmWaTYQ==</latexit> I(t) = k exp(rt) <latexit sha1_base64="YqBVCmEG4Xltxg7eyG3luZYdW48=">AAACG3icbVBNSwMxEM36bf2qevQSLEILWnelqBfBj4vHCrYKbS2zabYNzWaXZFYsxZ/h0V/iUb2IVw/+G9N2D9r6YJjHezMk8/xYCoOu++1MTc/Mzs0vLGaWlldW17LrG1UTJZrxCotkpG99MFwKxSsoUPLbWHMIfclv/O7FwL+559qISF1jL+aNENpKBIIBWqmZ3e/W+UOc1xQL9ITWhcKmS+9sD7BHz/JQSP087kGh0IJmNucW3SHoJPFSkiMpys3sV70VsSTkCpkEY2qeG2OjDxoFk/wxU08Mj4F1oc1rlioIuWn0h4c90h2rtGgQaVsK6VD9vdGH0Jhe6O/6oR0OATtm3B6I/3m1BIPjRl+oOEGu2OitIJEUIzoIiraE5gxlzxJgWtjvUtYBDQxtnBmbgzd+9SSpHhS9w2LpqpQ7PU8TWSBbZJvkiUeOyCm5JGVSIYw8kRfyRt6dZ+fV+XA+R6NTTrqzSf7A+foBwBeeuw==</latexit> k exp(rt) = Z 1 0 A(a)k exp(r(t a))da でないといけない。両辺 で割れば <latexit sha1_base64="g1gRI6Y400KhcDNHvGyOUuELeYQ=">AAAB/XicbVBNS8NAEN34WetXqkcvi0VoQUoiRb0IRS96q2A/oA1ls920SzebsDtRSyn+Eo/qRbz6Szz4b9y2OWjrg4HHezPMzPNjwTU4zre1tLyyurae2chubm3v7Nq5vbqOEkVZjUYiUk2faCa4ZDXgIFgzVoyEvmANf3A18Rv3TGkeyTsYxswLSU/ygFMCRurYuZsCFPEFHrTZY1xQGIodO++UnCnwInFTkkcpqh37q92NaBIyCVQQrVuuE4M3Igo4FWycbSeaxYQOSI+1DJUkZNobTU8f4yOjdHEQKVMS8FT9PTEiodbD0D/2Q9McEujreXsi/ue1EgjOvRGXcQJM0tmuIBEYIjyJAne5YhTE0BBCFTfnYtonilAwgWVNDu7814ukflJyT0vl23K+cpkmkkEH6BAVkIvOUAVdoyqqIYoe0DN6RW/Wk/VivVsfs9YlK53ZR39gff4AmWaTYQ==</latexit> I(t) = k exp(rt) オイラー- トロカの特性⽅程式 <latexit sha1_base64="J/e5A2LBdnws9TuyTGuk9tcHYis=">AAACDnicbVDLSgNBEJz1GeMr6tHLkCAkoGFXRL0IUS8eI5gHJDH0Tmbj4OzsMtMrhpC7R7/Eo3oRr/6AB//GyeOg0YKmi6puZrr8WAqDrvvlzMzOzS8sppbSyyura+uZjc2qiRLNeIVFMtJ1HwyXQvEKCpS8HmsOoS95zb89H/q1O66NiNQV9mLeCqGrRCAYoJXamaxHT2hTKGy79Nr2AHv0NA+FJr+P83saCh1oZ3Ju0R2B/iXehOTIBOV25rPZiVgScoVMgjENz42x1QeNgkk+SDcTw2Ngt9DlDUsVhNy0+qNbBnTHKh0aRNqWQjpSf270ITSmF/q7fmiHQ8AbM20Pxf+8RoLBcasvVJwgV2z8VpBIihEdZkM7QnOGsmcJMC3sdym7AQ0MbYJpm4M3ffVfUt0veofFg8uDXOlskkiKbJMsyROPHJESuSBlUiGMPJAn8kJenUfn2Xlz3sejM85kZ4v8gvPxDWZHmc8=</latexit> 1 = Z 1 0 A(a) exp( ra)da <latexit sha1_base64="QvFYNraTbOF3WY09zCRxI8hPGLg=">AAACeXicfVDLbhNBEBwvr2BeDhy5TGIhmSiydnnfCAmHXBBBwkkkr7F6Z3udUeaxmulFWKu98zVck1/Jt+TCrGMkkiBaGk2punp6qrJSSU9xfNaJbty8dfvOyt3uvfsPHj7qrT7e97ZyAkfCKusOM/CopMERSVJ4WDoEnSk8yI532v7Bd3ReWvOV5iVONMyMLKQACtS0t57mhQNRfxjA86ZOpaFp/C1cBc15y+XQTHv9eBgvil8HyRL02bL2pqud92luRaXRkFDg/TiJS5rU4EgKhU03rTyWII5hhuMADWj0k3phpuHPApPzwrpwDPEF+/dEDdr7uc6CUgMd+au9ltzM9L/a44qKd5NamrIiNOJiV1EpTpa34fBcOhSk5gGAcDJ8l4sjCPlQiPDSovZtslb54OYjBpcOPwXqc4kOyLqNOgU309I0wfUs3WzR/4Tw448woG43RJ5cDfg62H8xTN4MX3951d/aXoa/wp6ydTZgCXvLttgu22MjJthP9oudsNPOebQWDaKNC2nUWc48YZcqevkbmCPB+g==</latexit> A(a) R 1 0 A(a)da ここで がserial intervalのpdfであることを思い出すと <latexit sha1_base64="DDEx2FgrbA2KW0FzqNF85JdxCjA=">AAACRnicbVBNb9NAFHwOHy3hK8CRy4oIKZEgslFVuCC19MKxINJWxMF6Xj+3q67X1u4zwrL833rsH+DAH+gRuCCubNIg0ZaRVjuamae3O2mlleMw/Bb0rl2/cXNt/Vb/9p279+4PHjzcc2VtJU1lqUt7kKIjrQxNWbGmg8oSFqmm/fR4Z+HvfybrVGk+cFPRvMBDo3Ilkb2UDD6+T0LxWsRZblG2UdfGmXKVxsZxo0nEynASfvJXzs3f1PYIxz54wdoepeMs7WL6Uo2eWxxn2CWDYTgJlxBXSbQiQ1hhNxl8jbNS1gUZlhqdm0VhxfMWLSupqevHtaMK5TEe0sxTgwW5ebvsoBNPvZKJvLT+GBZL9d+JFgvnmiJ9lhY+XCAfucv2QvyfN6s5fzVvlalqJiPPd+W1FlyKRaciU5Yk68YTlFb55wp5hL4q9s33fQ/R5V9fJXsvJtHmZOPdxnDrzaqRdXgMT2AEEbyELXgLuzAFCSdwBj/gZ3AafA9+Bb/Po71gNfMILqAHfwAljbDw</latexit> R0 = 1 Z 1 0 A(a) R 1 0 A(b)db exp( ra)da この傾きが増加率r→
  7. エボラは感染しやすいのか?(2) ⿇疹 R0 = 15.0 エボラ R0 =1.4 インフル R0

    = 1.7 Serial intervalの平均値 ⿇疹 = 12⽇ エボラ = 15⽇ インフル = 3⽇ 27/20 <latexit sha1_base64="DDEx2FgrbA2KW0FzqNF85JdxCjA=">AAACRnicbVBNb9NAFHwOHy3hK8CRy4oIKZEgslFVuCC19MKxINJWxMF6Xj+3q67X1u4zwrL833rsH+DAH+gRuCCubNIg0ZaRVjuamae3O2mlleMw/Bb0rl2/cXNt/Vb/9p279+4PHjzcc2VtJU1lqUt7kKIjrQxNWbGmg8oSFqmm/fR4Z+HvfybrVGk+cFPRvMBDo3Ilkb2UDD6+T0LxWsRZblG2UdfGmXKVxsZxo0nEynASfvJXzs3f1PYIxz54wdoepeMs7WL6Uo2eWxxn2CWDYTgJlxBXSbQiQ1hhNxl8jbNS1gUZlhqdm0VhxfMWLSupqevHtaMK5TEe0sxTgwW5ebvsoBNPvZKJvLT+GBZL9d+JFgvnmiJ9lhY+XCAfucv2QvyfN6s5fzVvlalqJiPPd+W1FlyKRaciU5Yk68YTlFb55wp5hL4q9s33fQ/R5V9fJXsvJtHmZOPdxnDrzaqRdXgMT2AEEbyELXgLuzAFCSdwBj/gZ3AafA9+Bb/Po71gNfMILqAHfwAljbDw</latexit> R0 = 1 Z 1 0 A(a) R 1 0 A(b)db exp( ra)da ↑R0 はserial intervalと増殖率rに 依存していることがわかる 右式より増殖率r が計算可能 (図2.4) ポイント:R0は「世代」ごとの感染性の指標 エボラは世代交代に2週間 vs インフルは3⽇ →インフルの⽅が感染性が⾼い →逆にエボラは隔離などで時間を稼ぎやすい
  8. Nishiura et al. (2016, EID)(1) 潜伏期間の2倍とかって基準は不確実性を⼊れてないよね Branching processに基づいて近似計算(contact tracingのデータなどは使っていないとい う意味において)

    【準備】 • Serial intervalの累積密度分布 (ガンマ分布) • ⼀⼈の⼈が何⼈に移すかの分布 (negative binomial分布) • R0 = 0.75, k = 0.14 30/20 <latexit sha1_base64="47yYbLZmmQtK0XddAAHV9JDnsas=">AAACWHicbVFdT9swFHXCRqF8lfK4F2/VpFaFKkEV8IKE2AN77Ka1gJpSOa7TWrGTyL5BRFH+JBIP7JfsEbfNNEa5kq3jc87VtY/9RHANjvNs2WsfPq5XNjarW9s7u3u1/fpAx6mirE9jEasbn2gmeMT6wEGwm0QxIn3Brv3w21y/vmdK8zj6BVnCRpJMIx5wSsBQ45roNW/PsxY+x94kUITm3hWRkjTD9kOryLPPf4+twhMsgGbp+jl2ivnWDgtP8ekMWnfZ0uC2X1v+yflRWIxrDafjLAqvArcEDVRWb1x78iYxTSWLgAqi9dB1EhjlRAGnghVVL9UsITQkUzY0MCKS6VG+SKXAXw0zwUGszIoAL9jXHTmRWmfSP/SlMUsCM/1WnpPvacMUgrNRzqMkBRbR5awgFRhiPE8ZT7hiFERmAKGKm+tiOiMmFjB/UTU5uG9fvQoGxx33pNP90W1cXJaJbKBP6AtqIhedogv0HfVQH1H0iP5YlmVbv21kV+zNpdW2yp4D9F/Z9RdcGrKs</latexit> P(Y = y) = (k + x) y! (k) ✓ R0 R0 + k ◆y ✓ 1 + R0 k ◆ k 平均: R0 分散: R0 +R0 2/k この形がover-dispersionを表現している この分布の形がf(x) <latexit sha1_base64="OOmQKJP9zanNk9QB69eitBTKIJE=">AAACDHicbZDLSgMxFIYz9VbrbdSlm2ARWpAyI0VdKBQFcVmhN2hryaSZNjSTGZIz0lK6demTuFQ34tY3cOHbmF4W2vpD4OM/53Byfi8SXIPjfFuJpeWV1bXkempjc2t7x97dq+gwVpSVaShCVfOIZoJLVgYOgtUixUjgCVb1etfjevWBKc1DWYJBxJoB6Ujuc0rAWC0b32Qgiy9xMVO6mECDS2g594D9TD+L2/2WnXZyzkR4EdwZpNFMxZb91WiHNA6YBCqI1nXXiaA5JAo4FWyUasSaRYT2SIfVDUoSMN0cTi4Z4SPjtLEfKvMk4In7e2JIAq0HgXfsBaY5INDV8+Wx+V+tHoN/3hxyGcXAJJ3u8mOBIcTjZHCbK0ZBDAwQqrj5LqZdoggFk1/K5ODOX70IlZOce5rL3+XThatZIkl0gA5RBrnoDBXQLSqiMqLoET2jV/RmPVkv1rv1MW1NWLOZffRH1ucPShyX/g==</latexit> F(t) = P(T < t) = Z t 0 f(x)dx
  9. Nishiura et al. (2016, EID)(2) 今⼿元には、N⼈の発症⽇データti がある状況 ある⽇tにoutbreakが終わっている確率は以下で(近似的に)表現できる もし1⼈だけにうつしたなら: もし2⼈にうつしたなら:

    もし2⼈にt1 とt2 の時間にうつしたなら: 31/20 <latexit sha1_base64="RHfTVsPOuTH7o8WfyEtzHS91f1U=">AAACQHicbVBNa9tAFFwlaZu6X0567OURU7ChNVIIbS6GkELpqTgQJymWLVarVbJ4P8TuU6kQ+mM59j/00FuPbS8h15yydnxIkw4sDDPzePsmLaRwGIY/g5XVtQcPH60/bj15+uz5i/bG5pEzpWV8xIw09iSljkuh+QgFSn5SWE5VKvlxOvsw94+/cuuE0YdYFXyi6KkWuWAUvZS0D4fdGPk3rE2JqR+cgfFxoAgZraAB7MEA4sKaLKnFIGqmnyF2pUrqahA201joHCsYdr8Mqt7HLr7FRPSmVdLuhP1wAbhPoiXpkCWGSftHnBlWKq6RSercOAoLnNTUomCSN624dLygbEZP+dhTTRV3k3pxfQOvvZJBbqx/GmGh3p6oqXKuUumbVPmwonjm7tpz8X/euMR8d1ILXZTINbvZlZcS0MC8TciE5Qxl5QllVvjvAjujljL0nbd8D9Hdq++To+1+9K6/c7DT2dtfNrJOXpEt0iUReU/2yCcyJCPCyDn5Rf6Qv8H34HdwEVzeRFeC5cxL8g+Cq2uDya54</latexit> P(outbreak over at day t) = N Y i=1 1 X y=0 P(Y = y)F(t ti)y <latexit sha1_base64="+2O5TaslSr2FsDonIiuJG7a+xc4=">AAACFHicbVDLSgMxFM3UV62vUZdugkVoQcqMFHUjFAVxWcE+oB1KJk3b0MxkSO6Iw9BfcOmXuFQ34tadC//G9LHQ1gOBwznncnOPHwmuwXG+rczS8srqWnY9t7G5tb1j7+7VtYwVZTUqhVRNn2gmeMhqwEGwZqQYCXzBGv7wauw37pnSXIZ3kETMC0g/5D1OCRipYxeqhTawB0hlDL4ZHGJp4pgA7pIEjzAU8QW+LkCxY+edkjMBXiTujOTRDNWO/dXuShoHLAQqiNYt14nAS4kCTgUb5dqxZhGhQ9JnLUNDEjDtpZOLRvjIKF3ck8q8EPBE/T2RkkDrJPCP/cCEAwIDPW+Pxf+8Vgy9cy/lYRQDC+l0Vy8WGCQeN4S7XDEKIjGEUMXNdzEdEEUomB5zpgd3/upFUj8puael8m05X7mcNZJFB+gQFZCLzlAF3aAqqiGKHtEzekVv1pP1Yr1bH9NoxprN7KM/sD5/APvwnNM=</latexit> P(outbreak over at day t) = F(t) <latexit sha1_base64="c2V16gkeeDG6CvfbFi9yE96TPLQ=">AAACGHicbVDLSgMxFM34rPVVdekmWIQWSpkpRd0IRUFcVrAPaMeSSdM2NDMZkjviMPQnXPolLtWNuBVc+Demj4W2HggczjmXm3u8UHANtv1tLS2vrK6tpzbSm1vbO7uZvf26lpGirEalkKrpEc0ED1gNOAjWDBUjvidYwxtejv3GPVOay+AW4pC5PukHvMcpASN1MoVqrg3sARIZgWcGh1iaOCaAuyTGIwx5fI5zVznI5+9KnUzWLtoT4EXizEgWzVDtZL7aXUkjnwVABdG65dghuAlRwKlgo3Q70iwkdEj6rGVoQHym3WRy1QgfG6WLe1KZFwCeqL8nEuJrHftewfNN2Ccw0PP2WPzPa0XQO3MTHoQRsIBOd/UigUHicUu4yxWjIGJDCFXcfBfTAVGEgukybXpw5q9eJPVS0Tkplm/K2crFrJEUOkRHKIccdIoq6BpVUQ1R9Iie0St6s56sF+vd+phGl6zZzAH6A+vzBx/lndw=</latexit> P(outbreak over at day t) = (F(t))2 <latexit sha1_base64="y0wLlvwzQqxLuLw6YXFtU/cQzaw=">AAACHHicbVDLSgMxFM34rPU16tJNsAgtSJkpRd0IRUFcVrAPaIeSSdM2NDMZkjviMPQ3XPolLtWNuFTwb0wfC229kHA4D5J7/EhwDY7zbS0tr6yurWc2sptb2zu79t5+XctYUVajUkjV9IlmgoesBhwEa0aKkcAXrOEPr8Z6454pzWV4B0nEvID0Q97jlIChOrZTzbeBPUAqY/BNcIilsWMCuEsSPMJQwBf4Og8dtzC+S4WOnXOKzmTwInBnIIdmU+3Yn+2upHHAQqCCaN1ynQi8lCjgVLBRth1rFhE6JH3WMjAkAdNeOtlshI8N08U9qcwJAU/Y34mUBFongX/iB8YcEBjoeXlM/qe1YuideykPoxhYSKdv9WKBQeJxU7jLFaMgEgMIVdx8F9MBUYSC6TNrenDnt14E9VLRPS2Wb8u5yuWskQw6REcoj1x0hiroBlVRDVH0iJ7RK3qznqwX6936mFqXrFnmAP0Z6+sH7J6fTw==</latexit> P(outbreak over at day t) = F(t1)F(t2) ⼀般化 これを尤度とみて、y ~ NBからサンプルingすればベイズ的な推論が可能 でも、yがNBでFがガンマとかなら解析的にかけると思う
  10. Nishiura et al. (2016)の拡張について 32 Bradbury et al. (2020, Interface)

    Contact tracingで誰→誰っていう情報全く使 ってないので、使おう Linton et al. (2021,IJID) 報告遅れの要素⼊れておこう F()に畳み込みをする ぶっちゃけ、まだまだ⾊々拡張できそう。