$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データ分析で事業貢献するために
Search
Nealle
April 20, 2025
Programming
0
2.3k
データ分析で事業貢献するために
2025/4/22
CHUO_Tech #7 データ分析について語ろう!
https://chuo-tech.connpass.com/event/350259/
Nealle
April 20, 2025
Tweet
Share
More Decks by Nealle
See All by Nealle
Startup Tech Night ニーリーのAI活用
nealle
0
44
モビリティSaaSにおけるデータ利活用の発展
nealle
1
780
Pythonに漸進的に型をつける
nealle
1
190
品質ワークショップをやってみた
nealle
0
1.3k
DevHRに全部賭けろ
nealle
0
220
TROCCO×dbtで実現する人にもAIにもやさしいデータ基盤
nealle
1
2.4k
AI OCR API on Lambdaを Datadogで可視化してみた
nealle
0
370
生成AI、実際どう? - ニーリーの場合
nealle
0
1k
“いい感じ“な定量評価を求めて - Four Keysとアウトカムの間の探求 -
nealle
4
17k
Other Decks in Programming
See All in Programming
組み合わせ爆発にのまれない - 責務分割 x テスト
halhorn
1
140
Socio-Technical Evolution: Growing an Architecture and Its Organization for Fast Flow
cer
PRO
0
320
非同期処理の迷宮を抜ける: 初学者がつまづく構造的な原因
pd1xx
1
700
AIエンジニアリングのご紹介 / Introduction to AI Engineering
rkaga
5
2k
TUIライブラリつくってみた / i-just-make-TUI-library
kazto
1
380
dnx で実行できるコマンド、作ってみました
tomohisa
0
150
関数実行の裏側では何が起きているのか?
minop1205
1
690
SwiftUIで本格音ゲー実装してみた
hypebeans
0
160
手が足りない!兼業データエンジニアに必要だったアーキテクチャと立ち回り
zinkosuke
0
630
俺流レスポンシブコーディング 2025
tak_dcxi
14
8.6k
WebRTC、 綺麗に見るか滑らかに見るか
sublimer
1
160
How Software Deployment tools have changed in the past 20 years
geshan
0
29k
Featured
See All Featured
Bash Introduction
62gerente
615
210k
Facilitating Awesome Meetings
lara
57
6.7k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
Statistics for Hackers
jakevdp
799
230k
Large-scale JavaScript Application Architecture
addyosmani
515
110k
Done Done
chrislema
186
16k
How to Think Like a Performance Engineer
csswizardry
28
2.4k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
KATA
mclloyd
PRO
32
15k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Transcript
2025.04.22 CHUO Tech #7 株式会社ニーリー 上田 健太郎 NEALLE データ分析で事業貢献するために ~ビジネスチームとの伴走で見えたもの~
1
2017年から5年ほどECサイト運営企業にてデータ分析・プロダクト開発・ オンプレ→クラウド移行に従事。 2022年8月にニーリーに入社し、SREチームにてバックエンドシステムの インフラリアーキテクチャ・リリースエンジニアリングに従事。 2023年5月にAnalyticsチームの1人目のメンバーとなった。 好きなSQLクエリエンジンはPresto。 2 自己紹介 株式会社ニーリー Analyticsチーム
エンジニア 上田 健太郎
3 プロダクト紹介
データ分析で事業貢献するためには、データ分析チームとビジネスチームが どう協働すると効率的か? 実際に取り組んで見えてきたことをお話します。 4 今日のお話
5 Analyticsチームとは 「事業や経営の意思決定を支援するデータ分析結果の創出」がミッション。 データ分析だけでなく、分析に必要なデータ基盤の整備も担当。 2023-05 発足 2023-11 データ基盤 (BigQuery) 構築
2024-04 データ基盤本格運用開始 2024-07 汎用ダッシュボードの整備 2024-11 CL向け汎用レポート提供開始 2025-01 データ分析に全力投球 基盤に集めたデータをもとに事業KPIそのものの底上げに貢献すべく、 2025-01からはデータ分析に全力投球。
6 データ分析の進め方 (2025-01~) マーケ • マーケティングチームの「新規契約最大化」の取り組みに参画 • マーケメンバー + Analyticsチーム
で週3回 定例を設定し、分析をルーティン化 • 役割分担 Analytics 初期仮説の提示 定性分析 (アンケート調査等) 分析結果の施策適用 定点観測ダッシュボード整備 定量分析の考察 後続の仮説出し 定量分析 仮説・結果の整理 (図解) 新規契約 (CV) のボトルネックとなっているであろう要素 (仮説) を 有力な順に洗い出す → 一つ一つ検証... という、探索的な分析がメイン。
7 探索的なデータ分析には「目的・仮説・分析結果・施策の繋がりの図解役」を設けるべき。 なぜなら、繋がりはすぐに複雑化し、迷走を招くから。 協働を通して見えたもの① よくある例 MTG #1 もっとも有力な仮説 「新規契約のボトルネックは •••である」を検証しよう。
MTG #2 検証の過程で▲▲▲ということが分かった。 → ◯◯◯はまだ検証中だが、▲▲▲も重要 だから▲▲▲も深掘ろう。 MTG #3 ▲▲▲を深掘ったところ、直感に反して ▪▪▪と分かった。 → 分析ミスが無いチェックしよう。 いつの間にか優先度が低い仮説の検証に多くの時間を割いてしまう (迷走する) ことに...
図解により、議事録を遡ることなく一目で繋がりが分かるようになり、 • 迷走しにくくなった • 分析で得た知見が参照しやすくなり、仮説の精度が上がった 8 図解例: 目的・仮説・分析結果の繋がり 協働を通して見えたもの①
9 データ分析は徐々にビジネスチームに移譲し、データ分析チームは トラッキング強化・データマート整備に注力した方がレバレッジが効きそう。 協働を通して見えたもの② なぜ? • 生成AI (Gemini) により、初歩的な分析はプロンプトで命令するだけで済む →
サポートがあればビジネスチームでも分析の自走が可能 ただし、必要なデータがトラッキングされデータマート化されていることが前提 → ビジネスチームも生成AIも対応しにくいが、分析チームは対応しやすい
② データ分析は徐々にビジネスチームに移譲し、データ分析チームは トラッキング強化・データマート整備に注力した方がレバレッジが効きそう。 10 まとめ データ分析で事業貢献するためには、データ分析チームとビジネスチームが どう協働すると効率的か? について、実際に取り組んで見えてきたことをご紹介しました。 ①
探索的なデータ分析には「目的・仮説・分析結果・施策の繋がりの図解役」 を設けるべき。 似た指摘: AIがBIをどう変革するか - dbt Labs Blog
ニーリーではプロダクトエンジニア、 その他のポジションも積極採用中です! https://jobs.nealle.com/ We are hiring!!!