Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
データ分析で事業貢献するために
Search
Nealle
April 20, 2025
Programming
0
2k
データ分析で事業貢献するために
2025/4/22
CHUO_Tech #7 データ分析について語ろう!
https://chuo-tech.connpass.com/event/350259/
Nealle
April 20, 2025
Tweet
Share
More Decks by Nealle
See All by Nealle
TROCCO×dbtで実現する人にもAIにもやさしいデータ基盤
nealle
0
330
AI OCR API on Lambdaを Datadogで可視化してみた
nealle
0
180
生成AI、実際どう? - ニーリーの場合
nealle
0
530
“いい感じ“な定量評価を求めて - Four Keysとアウトカムの間の探求 -
nealle
3
14k
ニーリーにおけるプロダクトエンジニア
nealle
0
1.2k
プロダクト志向なエンジニアがもう一歩先の価値を目指すために意識したこと
nealle
0
420
事業KPIを基に価値の解像度を上げる
nealle
0
450
一人目PdMとして、まず"自分"をPMFさせることから考える
nealle
0
430
エンジニアが挑む、限界までの越境
nealle
1
1.1k
Other Decks in Programming
See All in Programming
MCPで実現するAIエージェント駆動のNext.jsアプリデバッグ手法
nyatinte
7
890
【第4回】関東Kaggler会「Kaggleは執筆に役立つ」
mipypf
0
840
サイトを作ったらNFCタグキーホルダーを爆速で作れ!
yuukis
0
500
為你自己學 Python - 冷知識篇
eddie
1
170
TanStack DB ~状態管理の新しい考え方~
bmthd
2
340
AIでLINEスタンプを作ってみた
eycjur
1
200
学習を成果に繋げるための個人開発の考え方 〜 「学習のための個人開発」のすすめ / personal project for leaning
panda_program
1
110
「リーダーは意思決定する人」って本当?~ 学びを現場で活かす、リーダー4ヶ月目の試行錯誤 ~
marina1017
0
240
The State of Fluid (2025)
s2b
0
200
Namespace and Its Future
tagomoris
5
370
Google I/O recap web編 大分Web祭り2025
kponda
0
2.9k
AIエージェント開発、DevOps and LLMOps
ymd65536
1
350
Featured
See All Featured
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.4k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Bash Introduction
62gerente
614
210k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
110
20k
The Language of Interfaces
destraynor
160
25k
Making Projects Easy
brettharned
117
6.3k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
Gamification - CAS2011
davidbonilla
81
5.4k
Visualization
eitanlees
147
16k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
Being A Developer After 40
akosma
90
590k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Transcript
2025.04.22 CHUO Tech #7 株式会社ニーリー 上田 健太郎 NEALLE データ分析で事業貢献するために ~ビジネスチームとの伴走で見えたもの~
1
2017年から5年ほどECサイト運営企業にてデータ分析・プロダクト開発・ オンプレ→クラウド移行に従事。 2022年8月にニーリーに入社し、SREチームにてバックエンドシステムの インフラリアーキテクチャ・リリースエンジニアリングに従事。 2023年5月にAnalyticsチームの1人目のメンバーとなった。 好きなSQLクエリエンジンはPresto。 2 自己紹介 株式会社ニーリー Analyticsチーム
エンジニア 上田 健太郎
3 プロダクト紹介
データ分析で事業貢献するためには、データ分析チームとビジネスチームが どう協働すると効率的か? 実際に取り組んで見えてきたことをお話します。 4 今日のお話
5 Analyticsチームとは 「事業や経営の意思決定を支援するデータ分析結果の創出」がミッション。 データ分析だけでなく、分析に必要なデータ基盤の整備も担当。 2023-05 発足 2023-11 データ基盤 (BigQuery) 構築
2024-04 データ基盤本格運用開始 2024-07 汎用ダッシュボードの整備 2024-11 CL向け汎用レポート提供開始 2025-01 データ分析に全力投球 基盤に集めたデータをもとに事業KPIそのものの底上げに貢献すべく、 2025-01からはデータ分析に全力投球。
6 データ分析の進め方 (2025-01~) マーケ • マーケティングチームの「新規契約最大化」の取り組みに参画 • マーケメンバー + Analyticsチーム
で週3回 定例を設定し、分析をルーティン化 • 役割分担 Analytics 初期仮説の提示 定性分析 (アンケート調査等) 分析結果の施策適用 定点観測ダッシュボード整備 定量分析の考察 後続の仮説出し 定量分析 仮説・結果の整理 (図解) 新規契約 (CV) のボトルネックとなっているであろう要素 (仮説) を 有力な順に洗い出す → 一つ一つ検証... という、探索的な分析がメイン。
7 探索的なデータ分析には「目的・仮説・分析結果・施策の繋がりの図解役」を設けるべき。 なぜなら、繋がりはすぐに複雑化し、迷走を招くから。 協働を通して見えたもの① よくある例 MTG #1 もっとも有力な仮説 「新規契約のボトルネックは •••である」を検証しよう。
MTG #2 検証の過程で▲▲▲ということが分かった。 → ◯◯◯はまだ検証中だが、▲▲▲も重要 だから▲▲▲も深掘ろう。 MTG #3 ▲▲▲を深掘ったところ、直感に反して ▪▪▪と分かった。 → 分析ミスが無いチェックしよう。 いつの間にか優先度が低い仮説の検証に多くの時間を割いてしまう (迷走する) ことに...
図解により、議事録を遡ることなく一目で繋がりが分かるようになり、 • 迷走しにくくなった • 分析で得た知見が参照しやすくなり、仮説の精度が上がった 8 図解例: 目的・仮説・分析結果の繋がり 協働を通して見えたもの①
9 データ分析は徐々にビジネスチームに移譲し、データ分析チームは トラッキング強化・データマート整備に注力した方がレバレッジが効きそう。 協働を通して見えたもの② なぜ? • 生成AI (Gemini) により、初歩的な分析はプロンプトで命令するだけで済む →
サポートがあればビジネスチームでも分析の自走が可能 ただし、必要なデータがトラッキングされデータマート化されていることが前提 → ビジネスチームも生成AIも対応しにくいが、分析チームは対応しやすい
② データ分析は徐々にビジネスチームに移譲し、データ分析チームは トラッキング強化・データマート整備に注力した方がレバレッジが効きそう。 10 まとめ データ分析で事業貢献するためには、データ分析チームとビジネスチームが どう協働すると効率的か? について、実際に取り組んで見えてきたことをご紹介しました。 ①
探索的なデータ分析には「目的・仮説・分析結果・施策の繋がりの図解役」 を設けるべき。 似た指摘: AIがBIをどう変革するか - dbt Labs Blog
ニーリーではプロダクトエンジニア、 その他のポジションも積極採用中です! https://jobs.nealle.com/ We are hiring!!!