Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
尤度/likelihood
Search
florets1
October 06, 2023
Education
3
950
尤度/likelihood
florets1
October 06, 2023
Tweet
Share
More Decks by florets1
See All by florets1
Rで学ぶデータハンドリング入門/Introduction_to_Data_Handling_with_R
florets1
0
110
人工知能はクロスジョインでできている/AI_Is_Built_on_Cross_Joins
florets1
0
64
仮説の取扱説明書/User_Guide_to_a_Hypothesis
florets1
4
400
複式簿記から純資産を排除する/eliminate_net_assets_from_double-entry_bookkeeping
florets1
1
410
カイ二乗検定は何をやっているのか/What_Does_the_Chi-Square_Test_Do
florets1
7
2.4k
直積は便利/direct_product_is_useful
florets1
3
430
butterfly_effect/butterfly_effect_in-house
florets1
1
250
データハンドリング/data_handling
florets1
2
240
カイ二乗検定との遭遇/The_path_to_encountering_the_chi-square_test
florets1
1
300
Other Decks in Education
See All in Education
Présentation_2nde_2025.pdf
bernhardsvt
0
260
授業レポート:共感と協調のリーダーシップ(2025年上期)
jibunal
0
120
Técnicas y Tecnología para la Investigación Neurocientífica en el Neuromanagement
jvpcubias
0
170
20250611_なんでもCopilot1年続いたぞ~
ponponmikankan
0
200
20250830_本社にみんなの公園を作ってみた
yoneyan
0
130
生成AI活用セミナー/GAI-workshop
gnutar
0
120
2025年度春学期 統計学 第14回 分布についての仮説を検証する ー 仮説検定(1) (2025. 7. 10)
akiraasano
PRO
0
160
データで見る赤ちゃんの成長
syuchimu
0
320
H5P-työkalut
matleenalaakso
4
40k
Sanapilvet opetuksessa
matleenalaakso
0
33k
生態系ウォーズ - ルールブック
yui_itoshima
1
280
the difficulty into words
ukky86
0
140
Featured
See All Featured
Keith and Marios Guide to Fast Websites
keithpitt
411
23k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
Bash Introduction
62gerente
615
210k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.2k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.6k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
33
2.5k
What's in a price? How to price your products and services
michaelherold
246
12k
The Power of CSS Pseudo Elements
geoffreycrofte
79
6k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Why Our Code Smells
bkeepers
PRO
340
57k
Mobile First: as difficult as doing things right
swwweet
224
10k
Transcript
1 2023.10.07 Tokyo.R #109 尤度(ゆうど)
2 尤度(ゆうど) ある前提条件に従って結果が出現する場合に、逆に観 察結果からみて前提条件が「何々であった」と推測す る尤もらしさ(もっともらしさ)を表す数値を、 「何々」を変数とする関数として捉えたものである。
3 尤度(ゆうど) ある結果から、どのような前提条件があったと推測す るのが妥当なのかを教えてくれる指標
4 尤度(ゆうど) 尤度とは、観測値が与えられたとき、それを説明する モデルや分布などの母数(パラメーター)の値の尤も らしさのことである。
5 尤度(ゆうど) 想定するパラメーターがある値をとる場合に観測して いる事柄や事象が起こりうる確率のこと。
6 尤度(ゆうど) 確率密度関数において確率変数に観測値を代入したも のをいう。つまり,確率密度を観測値で評価した値で ある。また,これを未知母数の関数とみるとき,とく に尤度関数という。
7 条件付き分布 𝑝(𝑟|𝜃) θ:成功率 r = 1:成功 r = 0:失敗
このような分布をベルヌーイ分布といいます
8 ベルヌーイ分布 𝑝(𝑟|𝜃)を立体化
9 𝑝 𝑟 𝜃 の 𝑟 を固定
10
11 𝑝(𝑟|𝜃)を 𝜃が変数だと考えよう これが尤度(ゆうど)です
12 ベルヌーイ分布 𝑝(𝑟|𝜃) 𝑟を変数として考えると 条件付き分布 𝜃を変数として考えると 尤度(ゆうど)
13 尤度(ゆうど)とは ある結果𝑟から、どのような前提条件𝜃があったと推測 するのが妥当なのかを教えてくれる指標
14 最尤推定 失敗と成功が一回ずつ得られたなら尤度は (1 − 𝜃)𝜃 この尤度が最大となる𝜃は0.5 1 − 𝜃
𝜃 (1 − 𝜃)𝜃
15 参考書 東京大学教養学部統計学教室 編. 統計学入門. 東京大学 出版会, 2014 飯塚修平. ウェブ最適化ではじめる機械学習.
オライ リー・ジャパン, 2020
16 おまけ