Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
尤度/likelihood
Search
florets1
October 06, 2023
Education
3
900
尤度/likelihood
florets1
October 06, 2023
Tweet
Share
More Decks by florets1
See All by florets1
複式簿記から純資産を排除する/eliminate_net_assets_from_double-entry_bookkeeping
florets1
0
5
カイ二乗検定は何をやっているのか/What_Does_the_Chi-Square_Test_Do
florets1
6
2.1k
直積は便利/direct_product_is_useful
florets1
3
310
butterfly_effect/butterfly_effect_in-house
florets1
1
130
データハンドリング/data_handling
florets1
2
170
カイ二乗検定との遭遇/The_path_to_encountering_the_chi-square_test
florets1
1
230
率の平均を求めてはいけない/Do_Not_Average_Rates
florets1
11
15k
請求と支払を照合する技術/using_full_join_in_r
florets1
2
230
応用セッション_同じデータでもP値が変わる話/key_considerations_in_NHST_2
florets1
1
1.1k
Other Decks in Education
See All in Education
Comment aborder et contribuer sereinement à un projet open source ? (Masterclass Université Toulouse III)
pylapp
0
3.3k
Flinga
matleenalaakso
2
14k
Human Perception and Cognition - Lecture 4 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
800
BEM FASILKOM UNEJ Navaratna
bemilkomunej24
0
130
Da Necessidade da Devoção à Virgem Santíssima
cm_manaus
0
110
BrightonSEO, San Diego, CA 2024
mchowning
0
120
HCI Research Methods - Lecture 7 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
810
保育士チームが実践している連続的な観察と多面的な観察を共有するための振り返り / Reflection to share “continuous and multifaceted observations” as practiced by a team of childcare professionals
psj59129
0
2.5k
Adobe Express
matleenalaakso
1
7.6k
自己紹介 / who-am-i
yasulab
PRO
2
4.4k
<学びの作品化>を促す 学習環境デザインの検討―表現方法の多様さが保障された授業に着目して― /jaet2024
kiriem
0
300
1030
cbtlibrary
0
330
Featured
See All Featured
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
19
2.3k
Code Review Best Practice
trishagee
65
17k
VelocityConf: Rendering Performance Case Studies
addyosmani
327
24k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
192
16k
How STYLIGHT went responsive
nonsquared
96
5.3k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
3
240
A Modern Web Designer's Workflow
chriscoyier
693
190k
Keith and Marios Guide to Fast Websites
keithpitt
410
22k
The Invisible Side of Design
smashingmag
299
50k
GitHub's CSS Performance
jonrohan
1030
460k
Fontdeck: Realign not Redesign
paulrobertlloyd
82
5.3k
Transcript
1 2023.10.07 Tokyo.R #109 尤度(ゆうど)
2 尤度(ゆうど) ある前提条件に従って結果が出現する場合に、逆に観 察結果からみて前提条件が「何々であった」と推測す る尤もらしさ(もっともらしさ)を表す数値を、 「何々」を変数とする関数として捉えたものである。
3 尤度(ゆうど) ある結果から、どのような前提条件があったと推測す るのが妥当なのかを教えてくれる指標
4 尤度(ゆうど) 尤度とは、観測値が与えられたとき、それを説明する モデルや分布などの母数(パラメーター)の値の尤も らしさのことである。
5 尤度(ゆうど) 想定するパラメーターがある値をとる場合に観測して いる事柄や事象が起こりうる確率のこと。
6 尤度(ゆうど) 確率密度関数において確率変数に観測値を代入したも のをいう。つまり,確率密度を観測値で評価した値で ある。また,これを未知母数の関数とみるとき,とく に尤度関数という。
7 条件付き分布 𝑝(𝑟|𝜃) θ:成功率 r = 1:成功 r = 0:失敗
このような分布をベルヌーイ分布といいます
8 ベルヌーイ分布 𝑝(𝑟|𝜃)を立体化
9 𝑝 𝑟 𝜃 の 𝑟 を固定
10
11 𝑝(𝑟|𝜃)を 𝜃が変数だと考えよう これが尤度(ゆうど)です
12 ベルヌーイ分布 𝑝(𝑟|𝜃) 𝑟を変数として考えると 条件付き分布 𝜃を変数として考えると 尤度(ゆうど)
13 尤度(ゆうど)とは ある結果𝑟から、どのような前提条件𝜃があったと推測 するのが妥当なのかを教えてくれる指標
14 最尤推定 失敗と成功が一回ずつ得られたなら尤度は (1 − 𝜃)𝜃 この尤度が最大となる𝜃は0.5 1 − 𝜃
𝜃 (1 − 𝜃)𝜃
15 参考書 東京大学教養学部統計学教室 編. 統計学入門. 東京大学 出版会, 2014 飯塚修平. ウェブ最適化ではじめる機械学習.
オライ リー・ジャパン, 2020
16 おまけ