Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
尤度/likelihood
Search
florets1
October 06, 2023
Education
3
960
尤度/likelihood
florets1
October 06, 2023
Tweet
Share
More Decks by florets1
See All by florets1
なぜSQLはAIぽく見えるのか/why does SQL look AI like
florets1
0
450
Tableauとggplot2の背景/Background_of_Tableau_and_ggplot2
florets1
0
50
Rで学ぶデータハンドリング入門/Introduction_to_Data_Handling_with_R
florets1
0
130
人工知能はクロスジョインでできている/AI_Is_Built_on_Cross_Joins
florets1
0
83
仮説の取扱説明書/User_Guide_to_a_Hypothesis
florets1
4
430
複式簿記から純資産を排除する/eliminate_net_assets_from_double-entry_bookkeeping
florets1
1
450
カイ二乗検定は何をやっているのか/What_Does_the_Chi-Square_Test_Do
florets1
7
2.5k
直積は便利/direct_product_is_useful
florets1
3
450
butterfly_effect/butterfly_effect_in-house
florets1
1
270
Other Decks in Education
See All in Education
コマンドラインを見直そう(1995年からタイムリープ)
sapi_kawahara
0
660
TeXで変える教育現場
doratex
1
12k
卒論の書き方 / Happy Writing
kaityo256
PRO
54
28k
Node-REDで広がるプログラミング教育の可能性
ueponx
1
260
1125
cbtlibrary
0
170
Chapitre_2_-_Partie_3.pdf
bernhardsvt
0
150
【ZEPホスト用メタバース校舎操作ガイド】
ainischool
0
170
俺と地方勉強会 - KomeKaigi・地方勉強会への期待 -
pharaohkj
1
1.6k
1021
cbtlibrary
0
400
Use Cases and Course Review - Lecture 8 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.4k
1008
cbtlibrary
0
130
LotusScript でエージェント情報を出力してみた
harunakano
0
120
Featured
See All Featured
Claude Code のすすめ
schroneko
67
210k
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.2k
Paper Plane (Part 1)
katiecoart
PRO
0
4k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
Leadership Guide Workshop - DevTernity 2021
reverentgeek
1
200
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
60
42k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
130
The Cult of Friendly URLs
andyhume
79
6.8k
First, design no harm
axbom
PRO
2
1.1k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
750
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
2
410
Transcript
1 2023.10.07 Tokyo.R #109 尤度(ゆうど)
2 尤度(ゆうど) ある前提条件に従って結果が出現する場合に、逆に観 察結果からみて前提条件が「何々であった」と推測す る尤もらしさ(もっともらしさ)を表す数値を、 「何々」を変数とする関数として捉えたものである。
3 尤度(ゆうど) ある結果から、どのような前提条件があったと推測す るのが妥当なのかを教えてくれる指標
4 尤度(ゆうど) 尤度とは、観測値が与えられたとき、それを説明する モデルや分布などの母数(パラメーター)の値の尤も らしさのことである。
5 尤度(ゆうど) 想定するパラメーターがある値をとる場合に観測して いる事柄や事象が起こりうる確率のこと。
6 尤度(ゆうど) 確率密度関数において確率変数に観測値を代入したも のをいう。つまり,確率密度を観測値で評価した値で ある。また,これを未知母数の関数とみるとき,とく に尤度関数という。
7 条件付き分布 𝑝(𝑟|𝜃) θ:成功率 r = 1:成功 r = 0:失敗
このような分布をベルヌーイ分布といいます
8 ベルヌーイ分布 𝑝(𝑟|𝜃)を立体化
9 𝑝 𝑟 𝜃 の 𝑟 を固定
10
11 𝑝(𝑟|𝜃)を 𝜃が変数だと考えよう これが尤度(ゆうど)です
12 ベルヌーイ分布 𝑝(𝑟|𝜃) 𝑟を変数として考えると 条件付き分布 𝜃を変数として考えると 尤度(ゆうど)
13 尤度(ゆうど)とは ある結果𝑟から、どのような前提条件𝜃があったと推測 するのが妥当なのかを教えてくれる指標
14 最尤推定 失敗と成功が一回ずつ得られたなら尤度は (1 − 𝜃)𝜃 この尤度が最大となる𝜃は0.5 1 − 𝜃
𝜃 (1 − 𝜃)𝜃
15 参考書 東京大学教養学部統計学教室 編. 統計学入門. 東京大学 出版会, 2014 飯塚修平. ウェブ最適化ではじめる機械学習.
オライ リー・ジャパン, 2020
16 おまけ